From Concurrent to Parallel

Library-based parallelism in |DK 7

Sun

microsystems

This material is protected by
copyright and is licensed only for
use in connection with specific
presentations or training
engagements. For permission to
use, please contact
brian@briangoetz.com

Overview

Copyright © 2008 Brian Goetz

Hardware trends

> As of ~2003, we stopped seeing increases in CPU clock rate
> Moore’s law has not been repealed!

1000000

Giving us more cores per chip rather
than faster cores

Maybe even slower cores

» Chart at right shows clock speed r——

maEm
1000 .

. e L

of Intel CPU releases over time . %
Exponential increase until 2003 : / ¥
No increase since 2003 | e Lt

» Result: many more programmers t 5%

become concurrent programmers
(maybe reluctantly)

L + Clock Speed [MHz]

= Transistors [D00)

01 I I I I

1971 1375 1373 1383 1387 1331 1395 1333 2003 2o

Copyright © 2008 Brian Goetz

Hardware trends

» “The free lunch is over”

For years, we had it easy
Always a faster machine coming out in a few months

Can no longer just buy a new machine and have our program run faster
Even true of many so-called concurrent programs!

» Challenge #1: decomposing your application into units of
work that can be executed concurrently

» Challenge #2: Continuing to meet challenge #1 as processor
counts increase

Even so-called scalable programs often run into scaling limits just by
doubling the number of available CPUs

Need coding techniques that parallelize efficiently across a wide range
of processor counts

Copyright © 2008 Brian Goetz

Hardware trends

Primary goal of using threads has always been to achieve
better CPU utilization

But those hardware guys just keep raising the bar

In the old days - only one CPU
Threads were largely about asynchrony
Utilization improved by doing other work during I/0 operations
More recently - handful (or a few handfuls) of cores
Coarse-grained parallelism usually enough for reasonable utilization
Application-level requests made reasonable task boundaries
Thread pools were a reasonable scheduling mechanism
Soon - all the cores you can eat
May not be enough concurrent user requests to keep CPUs busy
May need to dig deeper to find latent parallelism
Shared work queues become a bottleneck

Copyright © 2008 Brian Goetz

»

Hardware trends drive software trends

+ Languages, libraries, and frameworks shape how we program

All languages are Turing-complete, but...the programs we actually
write reflect the idioms of the languages and frameworks we use

- Hardware shapes language, library, and framework design

The Java language had thread support from day 1
But early support was mostly useful for asynchrony, not concurrency
Which was just about right for the hardware of the day

 As MP systems became cheaper, platform evolved better
library support for coarse-grained concurrency (JDK 5)
Principal user challenge was identifying reasonable task boundaries
- Programmers now need to exploit fine-grained parallelism
Better library support will help!

May be able to borrow classical parallel programming techniques
We need to be on the lookout for latent parallelism

Copyright © 2008 Brian Goetz

Finding finer-grained parallelism

» User requests are often too coarse-grained a unit of work for
keeping many-core systems busy
May not be enough concurrent requests
Possible solution: find parallelism within existing task boundaries

» Most promising candidate is sorting and searching

Amenable to parallelization
Sorting can be parallelized with merge sort

Searching can be parallelized by searching sub-regions of the data in
parallel and then merging the results

Can improve response time by using more CPUs
May actually use more total CPU cycles, but less wall-clock time
Response time may be more important than total CPU cost
Human time is valuable!

Copyright © 2008 Brian Goetz

Finding finer-grained parallelism

> Example: stages in the life of a database query
Parsing and analysis
Plan selection (may evaluate many candidate plans)
1/0 (already reasonably parallelized)

Post-processing (filtering, sorting, aggregation)
SELECT first, last FROM Names ORDER BY last, first
SELECT SUM(amount) FROM Orders

SELECT student, AVG(grade) as avg FROM Tests
GROUP BY student
HAVING avg > 3.5

> Plan selection and post-processing phases are CPU-intensive
Could be sped up with more parallelism

Copyright © 2008 Brian Goetz

Running example: select-max

> Simplified example: find the largest element in a list
O(n) problem

Obvious sequential solution: iterate the elements
For very small lists the sequential solution is obviously fine

For larger lists a parallel solution will clearly win

Though still O(n)

class MaxProblem {
final int[] nums;)
final Int start, end, size;

public Int solveSequentlaIIKSE
int max = Integer_MIN_VA
for (int |—start 1<end; |++)
max = Math. max(max nums[l]);
return max;

}

public MaxProblem subproblem(int subStart, int subEnd) {
return new MaxProblem(nums, start+subStart, start+subEnd);

Copyright © 2008 Brian Goetz

@ Sun

microsystems

First attempt: Executor+Future

> We can divide the problem into N disjoint subproblems and
solve them independently

Then compute the maximum of the result of all the subproblems
Can solve the subproblems concurrently with invokeAll()

Collection<Callable<lnteger>> tasks
for (int 1=0; I<N; 1++)

tasks.add(makeCal lableForSubproblem(problem, N, 1));
List<Future<Integer>> results = executor.invokeAll (tasks);
int max = -Integer.MAX_ VALUE;

for (Future<linteger> result

> results)
max =

Math.max(max, result.get());

10

Copyright © 2008 Brian Goetz

First attempt: Executor+Future

> A reasonable choice of N is Runtime.availableProcessors()
Will prevent threads from competing with each other for CPU cycles
Problem is “embarassingly parallel”

» But this approach has several inherent scalability limits
Shared work queue in Executor eventually becomes a bottleneck
If some subtasks finish faster than others, may not get ideal utilization
Can address by using smaller subproblems
But this increases contention costs
» Code is clunky!
Subproblem extraction prone to fencepost errors
Find-maximum loop duplicated

» Clunky code => people won’t bother with it

H Copyright © 2008 Brian Goetz

Parallelization technique: divide-and-conquer

» Divide-and-conquer breaks down a problem into subproblems,
solves the subproblems, and combines the result

» Example: merge sort
Divide the data set into pieces
Sort the pieces
Merge the results
Result is still Ofn log n), but subproblems can be solved in parallel
Parallelizes fairly efficiently - subproblems operate on disjoint data
> Divide-and-conquer applies this process recursively
Until subproblems are so small that sequential solution is faster
Scales well - can keep many CPUs busy

12 Copyright © 2008 Brian Goetz

13

Divide-and-conquer

> Divide-and-conquer algorithms take this general form

Result solve(Problem problem) {
iIT (problem.size < SEQUENTIAL THRESHOLD)
return problem.solveSequentially();
else {
Result left, right;
INVOKE-IN-PARALLEL {
left = solve(problem.extractLeftHalf());
right = solve(problem.extractRightHalt());
+
return combine(left, right);
+
}

> The invoke-in-parallel step waits for both halves to complete
Then performs the combination step

Copyright © 2008 Brian Goetz

Fork-join parallelism

» The key to implementing divide-and-conquer is the /nvoke-in-
parallel operation
Create two or more new tasks (fork)
Suspend the current task until the new tasks complete (join)

» Naive implementation creates a new thread for each task
Invoke Thread() constructor for the fork operation
Thread.join() for the join operation
Don’t actually want to do it this way
Thread creation is expensive
Requires O(log n) idle threads
» Of course, non-naive implementations are possible
Package java.util.concurrent.forkjoin proposed for |DK 7 offers one

For now, download package jsr166y from
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

1 . .
4 Copyright © 2008 Brian Goetz

Solving select-max with fork-join

> The RecursiveAction class in the fork-join framework is ideal

for representing divide-and-conqure solutions

class MaxSolver extends RecursiveAction {
private final MaxProblem problem;
iInt result;

protected void compute(} §
iIT (problem.size < THRESHOLD) i
I rgsult = problem.solveSequentially();
else
iInt m = problem.size / 2;
MaxSolver left, right;
left = new MaxSolver(problem.subproblem(0, m));
right = new MaxSolver(problem.subproblem(m,
) i problem.size));
forkJoin(left, right);)
result = Math.max(left.result, right.result);

}
y }

ForkJoinExecutor pool = new ForkJoinPool(nThreads);
MaxSolver solver = new MaxSolver(problem);
pool . invoke(solver);

° Copyright © 2008 Brian Goetz

Fork-join example

» Example implements RecursiveAction
The forkjoin() method creates two new tasks and waits for them

ForkjoinPool is like an Executor, but optimized for fork-join tasks

Waiting for other pool tasks risks thread-starvation deadlock in standard
executors

» Implementation can avoid copying elements

Different subproblems work on disjoint portions of the data
Which also happens to have good cache locality
Data copying would impose a significant cost

In this case, data is read-only for the entirety of the operation
» Other useful task base classes
RecursiveTask for result-bearing tasks

AsyncAction for tasks with asynchronous completion
CyclicAction for parallel iterative tasks

16 Copyright © 2008 Brian Goetz

Performance considerations

» How low should the sequential threshold be set?

» Two competing performance forces
Making tasks smaller enhances parallelism
Increased load balancing, improves throughput

Making tasks larger reduces coordination overhead
Must create, enqueue, dequeue, execute, and wait for tasks

» Fork-join task framework is designed to minimize per-task
overhead for compute-intensive tasks

The lower the task-management overhead, the lower the sequential
threshold can be set

Traditional Executor framework works better for tasks that have a mix
of CPU and 1/0 activity

Y Copyright © 2008 Brian Goetz

Performance considerations

» Fork-join offers a portable way to express many parallel
algorithms
Code is independent of the execution topology
Reasonably efficient for a wide range of CPU counts
Library manages the parallelism
Frequently no additional synchronization is required
» Still must set number of threads in fork-join pool
Runtime.availableProcessors() is usually the best choice
Larger numbers won’t hurt much, smaller numbers will limit parallelism
» Must also determine a reasonable sequential threshold
Done by experimentation and profiling
Mostly a matter of avoiding “way too big” and “way too small”

18 Copyright © 2008 Brian Goetz

I ©

Performance considerations

19

» Table shows speedup relative to sequential for various
platforms and thresholds for 500K run (bigger is better)

Pool size always equals number of HW threads

No code differences across HW platforms

Can’t expect perfect scaling, because framework and scheduling
introduce some overhead

» Reasonable speedups for wide range of threshold

Sun

microsystems

Threshold=500k

Threshold=50K

Threshold=5K

Threshold=500

Threshold=50

Dual Xeon HT (4)

.88

(32)

3.02 3.2 2.22 .43
8-way Opteron 1.0 5.29 5.73 4.53 2.03
(8)
8-core Niagara .98 10.46 17.21 15.34 6.49

Copyright © 2008 Br

ian Goetz

Under the hood

> Already discussed naive implementation — use Thread
Problem is it uses a lot of threads, and they mostly just wait around

» Executor is similarly a bad choice

Likely deadlock if pool is bounded - standard thread pools are designed
for independent tasks

Standard thread pools can have high contention for task queue and
other data structures when used with fine-grained tasks
» An ideal solution minimizes
Context switch overhead between worker threads
Have as many threads as hardware threads, and keep them busy

Contention for data structures
Avoid a common task queue

20 Copyright © 2008 Brian Goetz

Work stealing

> Fork-join framework is implemented using work-stealing
Create a limited number of worker threads

Each worker thread maintains a private double-ended work queue
(deque)

Optimized implementation, not the standard JUC deques
When forking, worker pushes new task at the Aead of its deque

When waiting or idle, worker pops a task off the head of its deque and
executes it
Instead of sleeping

If worker’s deque is empty, steals an element off the Za// of the deque
of another randomly chosen worker

ot Copyright © 2008 Brian Goetz

Work stealing

» Work-stealing is efficient - introduces little per-task overhead

» Reduced contention compared to shared work queue
No contention ever for head
Because only the owner accesses the head
No contention ever between head and tail access
Because good queue algorithms enable this
Almost never contention for tail
Because stealing is infrequent, and steal collisions more so

» Stealing is infrequent
Workers put and retrieve items from their queue in LIFO order
Size of work items gets smaller as problem is divided

So when a thread steals from the tail of another worker’s queue, it
generally steals a big chunk!

This will keep it from having to steal again for a while

° Copyright © 2008 Brian Goetz

Work stealing

> When pool.invoke() is called, task is placed on a random
deque
That worker executes the task

Usually just pushes two more tasks onto its deque - very fast
Starts on one of the subtasks

Soon some other worker steals the other top-level subtask

Pretty soon, most of the forking is done, and the tasks are distributed
among the various work queues

Now the workers start on the meaty (sequential) subtasks
If work is unequally distributed, corrected via stealing
» Result: reasonable load balancing
With no central coordination
With little scheduling overhead

With minimal synchronization costs
Because synchronization is almost never contended

3 Copyright © 2008 Brian Goetz

Example: Traversing and marking a graph

> Extend LinkedAsyncAction instead of RecursiveAction
LinkedAsyncAction manages parent-child relationship

Finish method means “wait for all my children”
Example uses AtomicBoolean to safely manage shared mark bits

class GraphVisitor extends LinkedAsyncAction {
GraphVisitor(GraphVisitor parent, Node node) {
super(parent); this.node = node;

protected void compute() {
IT (node.mark.compareAndSet(false, true)) {
for (Edge e : node.edges()) {
Node dest = e.getDestination();
IT (Idest.mark.get())
new GraphVisitor(this, dest).fork();

visit(node);

+
finish();

Copyright © 2008 Brian Goetz

25

Other applications

> Fork-join can be used for parallelizing many types of problems
Matrix operations
Multiplication, LU decomposition, etc
Finite-element modeling
Numerical integration
Game playing
Move generation

Move evaluation
Alpha-beta pruning

Copyright © 2008 Brian Goetz

Taking it up a level

» Still lots of “boilerplate” code in fork-join tasks

Decomposing into subproblems, choosing between recursive and
sequential execution, managing subtasks

» Would be nicer to specify parallel aggregate operations at a

higher abstraction level
Enter ParallelArray

» The ParallelArray classes let you declaratively specify
aggregate operations on data arrays
And uses fork-join to efficiently execute on the available hardware

» Versions for primitives and objects
ParallelArray<T>, ParallelLongArray, etc

» Resembles a restricted, in-memory, parallel DBMS

Less powerful than LinQ, but designed for parallelization with a
transparent cost model

6 . .
’ Copyright © 2008 Brian Goetz

ParallelArray

> Coding select-max with ParallelArray is trivial

ParallelLongArray pa
= ParallelLongArray.createUsingHandoff(array, fTjPool);

long max = pa.max();
> ParallelArray framework automates fork-join decomposition
for operations on arrays

Supports filtering, element mapping, and combination across multiple
parallel arrays

Batches all operations into a single parallel step

2 Copyright © 2008 Brian Goetz

ParallelArray

> Slightly less trivial example: select highest GPA of students
graduating this year

class Student {
String name;
Int graduationYear;
double gpa;
}
ParallelArray<Student> students
= ParallelArray.createUsingHandoff(studentsArray, forkJoinPool);
double highestGpa = students.withFilter(graduatesThisYear)
-withMapping(selectGpa)
-max();
Ops.Predicate<Student> graduatesThisYear = new Ops.Predicate<Student>() {
public boolean op(Student s) {

return s.graduationYear == 2008;
}_}
Oﬁs.ObjectToDoubIe<Student> selectGpa = new Ops.ObjectToDouble<Student>()
{

public double op(Student student) {
return student.gpa;
+

¥

Copyright © 2008 Brian Goetz

ParallelArray

> We specify three operations - filter, map, aggregate
Uses filtering to select students graduating this year
Uses mapping to select each student’s GPA
Applies max() to result

> Query looks imperative, but in fact is more like declarative

The actual work isn’t done until the aggregation step (max())
Other methods merely set up the “query”
Filtering and mapping calls just set up lightweight descriptors

9 Copyright © 2008 Brian Goetz

ParallelArray

> There are some restrictions
Filtering must precede mapping
Mapping must precede aggregation

Must have an aggregation or replacement step
Because that’s where the work is done
Can use all() method to return a ParallelArray containing all filtered rows

> These restrictions are largely in aid of maintaining a
transparent cost model

SQL let’s you express arbitrarily complicated queries in a single
statement, but it is harder to predict their performance

ParallelArray makes it much more obvious how much the query is
going to cost

3 Copyright © 2008 Brian Goetz

ParallelArray example: mean and variance

> We can use ParallelArray to sample, compute mean and
variance in three parallel operations
Separate operations needed because of dataflow dependencies

ParallelDoubleArray data

= ParallelDoubleArray.create(SIZE, forkJoinPool)
-replaceWithGeneratedvValue(getSample);

final double mean = data.sum() 7/ SIZE;
double variance = data
~withMapping(new Ops.DoubleOp() {
public double op(double v) {
return (v-mean) * (v-mean);
+

P
-sum() / SIZE;

. Copyright © 2008 Brian Goetz

ParallelArray

» Basic operations supported by ParallelArray

Filtering - select a subset of the elements
Can specify multiple filters
Binary search supported on sorted parallel arrays

Mapping - convert selected elements to another form
Such as selecting a student’s GPA

Replacement - create a new ParallelArray derived from the original
Sorting, running accumulation

Aggregation - combine all values into a single value
Maxima, minima, sum, average
General-purpose reduce() method

Application - perform an action for each selected element

3 Copyright © 2008 Brian Goetz

Combining multiple ParallelArrays

> Operations can combine multiple parallel ParallelArrays

Compute min(a[i] + b[i] + c[i])
// a, b, and c are ParallelLongArrays

flong minSum = a.withMapping(CommonOps. longAdder(), b)
_withMapping(CommonOps. longAdder(), ©)

-minQ);
CommonOps has combiners for arithmetic operations, max and min,
etc

This form of withMapping uses the combiner to combine the element
of the receiver array with the corresponding element of the other array

33 Copyright © 2008 Brian Goetz

Connection with closures

> One of the features proposed for |DK 7 is closures
One goal of closures is to reduce redundant boilerplate code
Ugliest part of ParallelArray is the helper methods like selectGpa()

These would go away with closures

double highestGpa = students
-withFilter({ Student s => (s.graduationYear == THIS_YEAR) })
-withMapping({ Student s => s.gpa })
-maxQ);

> With closures, API could be written in terms of function types
instead of named types
Ops.Predicate<T> becomes{ T => boolean }

Which might be a benefit or a disadvantage
Names are useful

34 Copyright © 2008 Brian Goetz

From Concurrent to Parallel

Library-based parallelism in |DK 7

Sun

microsystems

This material is protected by
copyright and is licensed only for
use in connection with specific
presentations or training
engagements. For permission to
use, please contact
brian@briangoetz.com

