
Confidential – for information of designated recipient only. Copyright Terracotta 2006

Clustered Architecture Patterns: Examinator

Ari Zilka – Terracotta

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

A bit of housekeeping...

 How many have heard of terracotta?

 Terracotta is open source

 It is designed to make Java apps less expensive
– smaller database servers
– no expensive J2EE app servers
– and no custom code
– all at the same time

 Terracotta servers manage your application data
– cluster in arrays that stripe and mirror

 Terracotta does not require (or support) SAN

 We are not asking you to program to threads

Thursday, November 20, 2008

Open Source Clustering for Java

Copyright Terracotta 2007

How our community uses Terracotta

1. Remove ORM/DB for a certain class of data

2. Cache DB to avoid expensive scale-up

3. Stop using JMS for replication

4. Simple/flexible messaging

5. Replace multiple caching and messaging tools

6. HTTP Sessions clustering that works

7. Scale a one node app to more without code rewrite

8. Get HA, low-latency apps on commodity hardware

2

Thursday, November 20, 2008

Open Source Clustering for Java

Copyright Terracotta 2007

Starting with your existing Java app

Thursday, November 20, 2008

Open Source Clustering for Java

Copyright Terracotta 2007

Easily integrate by using Terracotta Integration
Modules (TIMs)

• Container of your choice
• Spring in the box
• Popular Frameworks
• Pluggable solutions

– WAN, Write-behind, M/W, etc.
• Write your own

5

Thursday, November 20, 2008

Open Source Clustering for Java

Copyright Terracotta 2007

Very high performance, low latency scale out

• Data locality optimized

• Efficient cluster-wide coordination

6

Thursday, November 20, 2008

Open Source Clustering for Java

Copyright Terracotta 2007

Built-in scalability and availability

Thursday, November 20, 2008

Open Source Clustering for Java

Copyright Terracotta 2007

Tools help avoid tuning, debugging, downtime

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Tools in more detail

7

• Developer console
– Visualization
– Lock profiling
– Tuning & debugging

• Eclipse plug-in

• Maven integration

For the developer...

• Push button app management

• Runtime statistics monitoring

• Rolling upgrades

• Backup / Restore

• Root cause analysis

For production...

Thursday, November 20, 2008

Open Source Clustering for Java

Copyright Terracotta 2007

Comprehensive Data Mgmt Solution

9

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

High performance + high scale + POJO = simple

 10X throughput over conventional APIs
– All Reads from memory (implicit locality)
– All Writes are deltas-only
– Statistics and heuristics (greedy locks)

 Terracotta Server Array scales to 50K+ tps (w/o partitioning)

 Looks like Java to me (code like your mom used to make)
– Normal access patterns: no check-out before view and check-in on commit
– Code and test at a unit level without infrastructure intruding on app logic
– Threads on multiple JVMs look like threads on the same JVM

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

But how do I get these benefits?

 This is where Examinator comes in

Thursday, November 20, 2008

Open Source Clustering for Java

Copyright Terracotta 2007

Best Practices – Examinator

3

• Best of breed OSS stack
– Tomcat, Spring, Hibernate, EHCache, ServiceMix

• 16 nodes

• 20k concurrent users

• 5ms average response time

Thursday, November 20, 2008

Open Source Clustering for Java

Copyright Terracotta 2007

Examinator Use Cases

Business
Function

Terracotta
Usage

Alternative Benefit

Account creation
Incomplete user
validations held

in-memory

State machine in
db

Db scales with
actual users, not
potential ones

User authc

Spring Security
state clustered

inside HTTP
Session

No session
clustering

Failover between
app servers does
not impact user

experience

In progress Exams Only ADMINs can
see all exams

Store roles in DB DB offload

Flush to DB Asynch write-
behind to DB

Custom code DB offload /
smaller DB

4

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Pattern: Conversation Clustering

 Set a conversation key (cookie)

 Value should be object graph
– not primitives like string or byte array

 Load Balancer required
– Sticky load balancing (layer 7 preferred, or

Apache mod_jk)
– Ensures locality of reference

 No DB required

When to Use Terracotta

Ref. impl. code available now:
http://svn.terracotta.org/svn/forge/projects/exam/

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

AuthC/AuthZ

 Spring Security TIM
– Authentication (AbstractAuthenticationToken) and authorization

(GrantedAuthorityImpl) tokens held in HTTP Session via Spring Security
 <filter>
 <filter-name>springSecurityFilterChain</filter-name>
 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

– Clustered via Terracotta session clustering module
– Spring Security TIM handles all instrumentation configuration for objects in

HTTP session

 LoginController

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

AuthC/AuthZ: Spring Security

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Conversation State: Take The Exam

 Spring WebFlow
– Workflow through examination process

 ExamService (CachingWrapperExamService)
– Caches exam meta-data (questions, sections, etc.)

 ExamSessionService
– Manages the state of in-progress examinations using clustered:
– ConcurrentHashMap

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Conversational State: List Available Exams

<view-state id="chooseExam" view="exam/list">
 <on-render>
 <evaluate expression="examService.getAllExams()" result="viewScope.exams" />
 </on-render>
 <transition on="selectExam" to="examSelected">
 <set name="flowScope.examId" value="requestParameters.examId"></set>
 </transition>
 <transition on="return" to="return" />
</view-state>

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Conversational State: View Exam Details
<view-state id="examSelected" view="exam/details">
 <on-render>
 <evaluate expression="examService.findById(flowScope.examId)" result="viewScope.exam"/>
 </on-render>
 <transition on="back" to="chooseExam" />
 <transition on="return" to="return" />
 <transition on="startExam" to="startExam" />
</view-state>

public class CachingWrapperExamService implements ExamService {
 /* as defined in ehcache.xml */
 private static final String EXAM_CACHE_NAME = "examCache";

 private final CacheManager cacheManager;
 private final Ehcache cache;
 private final ExamService examService;

 public CachingWrapperExamService(ExamService examService){
 this.examService = examService;
 this.cacheManager = CacheManager.getInstance();
 this.cache = this.cacheManager.getEhcache(EXAM_CACHE_NAME);
 }
 // ...
 public Exam findById(Long id) {
 Exam exam = getCached(id);
 if (exam == null){
 exam = cache(this.examService.findById(id));
 }
 return exam;
 }
 // ...
}

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Conversation State: Start Exam

public class ExamSessionServiceImpl implements ExamSessionService {

 // a map storing userName -> examSession mapping of currently active exams
 @Root
 private final ConcurrentHashMap<String, ExamSession> ongoingExams = new ConcurrentHashMap<String, ExamSession>(
 20000,
 0.75f,
 512);
 private final ScheduledExecutorService examTimeoutExecutor = Executors.newScheduledThreadPool(1);
 private final Map<String, Future> scheduledTimeOutTasks = new HashMap<String, Future>();
 private final ExamService examService;
 private final UserService userService;
 private final QuestionComparator questionComparator = new QuestionComparator();

 @Autowired
 public ExamSessionServiceImpl(final ExamService examService, final UserService userService) {
 this.examService = examService;
 this.userService = userService;
 }

 // ...
}

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Conversation State: Start Exam (cont.)

public class ExamSessionServiceImpl implements ExamSessionService {
 // ...
public ExamSession startExam(final String userName, final Long examId) throws ExamException {
 final User user = userService.findByUserName(userName);
 final Exam exam = examService.findById(examId);
 if (null == exam) { return null; }
 // initialise the exam facade
 exam.getExamFacade();
 final ExamSession session = new ExamSession(exam.getTimeLimitInMinutes());
 session.setUserId(user.getId());
 session.setExamId(exam.getId());
 final ExamSession prev = ongoingExams.putIfAbsent(userName, session);
 if (prev != null && prev.getExamId().longValue() != examId.longValue()) {
 throw new ExamAlreadyInProgressException(userName,
 examService.findById(prev.getExamId()),
 "Exam already in progress for user: " + userName);
 }
 // return previously ongoing exam if attempted to start same exam again
 if (prev != null) return prev;

 // run the timeout after 2 secs from the actual time so that exam time out happens on the client first
 // and give the user a chance to get ExamTimedOutException when exam times out on client
 final Future timeoutTask = examTimeoutExecutor.schedule(new ExamTimeoutTask(this, userName),
 session.getRemainingTimeInSeconds() + 2, TimeUnit.SECONDS);
 scheduledTimeOutTasks.put(userName, timeoutTask);
 return session;
 }

 // ...
}

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Conversation State: Take Exam

 Spring Web Flow state clustered via HTTP Session clustering
– Spring Web Flow TIM

 ExamSession clustered via custom POJOs.

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Conversation State: Take Exam: ExamSessionService

public class ExamSessionServiceImpl implements ExamSessionService {

 // a map storing userName -> examSession mapping of currently active exams

 @Root

 private final ConcurrentHashMap<String, ExamSession> ongoingExams = new ConcurrentHashMap<String,
ExamSession>(20000, 0.75f, 512);

 // …

 public void evaluateExamQuestionForm(final String userName, final ExamQuestionForm examQuestionForm)

 throws ExamException {

 final ExamSession examSession = getExamSession(userName);

 examSession.addUserQuestionChoiceId(examQuestionForm.getQuestion().getId(),

 examQuestionForm.getUserChoiceId());

 examSession.markQuestionForReview(examQuestionForm.getQuestion(),

 examQuestionForm.isMarkQuestionForReview());

 }

Continued next slide…

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Conversation State: Take Exam: ExamSessionService

 public ExamSession getExamSession(final String userName) throws ExamException {

 ExamSession examSession = null;

 examSession = ongoingExams.get(userName);

 if (examSession == null) throw new ExamNotInProgressException(userName, "No Exam In Progress for
user:" + userName);

 if (examSession.getRemainingTimeInSeconds() <= 0) {

 ongoingExams.remove(userName);

 final ExamResult result = getExamResult(examSession);

 examService.saveExamResult(result);

 throw new ExamTimedOutException("Exam timed out", examService.findById(examSession.getExamId()),
result);

 }

 return examSession;

 }

 // ...

}

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

ConversationState: Take Exam: ExamSession
@InstrumentedClass

public class ExamSession implements Serializable {

 private Long userId;

 private final Date startTime;

 private Long examId;

 private final int examTimeLimitInMinutes;

 // mapping of questionId -> choiceId, solutions submitted by user

 private final Map<Long, Long> userQuestionChoiceMapping = new HashMap<Long, Long>();

 // questions marked for review, keeping id instead of actual question to save some bits in serialization

 private final Set<Long> questionsMarkedForReview = new HashSet<Long>();

 // ordered choices for questions mapping; keeps the ordering with choices id, this field will be serialized

 // key is questionId, value is a List of choiceIds

 private final Map<Long, List<Long>> questionChoicesOrder = new HashMap<Long, List<Long>>();

 //this field is used in ongoing.jsp to display the name of the exams

 private transient String examName;

 //this field is used in ongoing.jsp to display the name of the user taking the exam

 private transient String userName;

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

ConversationState: Take Exam: ExamSession
@InstrumentedClass

public class ExamSession implements Serializable {

 // ...

 public void addUserQuestionChoiceId(final Long questionId, final Long choiceId) {

 if (null == questionId || null == choiceId) return;

 userQuestionChoiceMapping.put(questionId, choiceId);

 }

 public void markQuestionForReview(final Question question, final boolean mark) {

 if (question == null) return;

 if (mark) questionsMarkedForReview.add(question.getId());

 else questionsMarkedForReview.remove(question.getId());

 }

}

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Conversation State: Take Exam: ExamSession

 ExamSession objects are normal objects on the local heap

 Object state is persistent

 ExamSession objects are only on heap where needed

 Fine-grained changes sent only where needed

 Simple locking: HTTP Session lock is all you need

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Coherent View Of Global Data: View Ongoing Exams

@Controller
@RequestMapping("/exam/ongoing.do")
@RolesAllowed({ StandardAuthoritiesService.ADMINISTRATOR })
public class OngoingExamsController {

 private final ExamSessionService service;

 @Autowired
 public OngoingExamsController(final ExamSessionService examSessionService) {
 this.service = examSessionService;
 }

 @RequestMapping(method = RequestMethod.GET)
 public ModelAndView listOngoingExams() {
 final ModelAndView result = new ModelAndView("exam/ongoing");
 result.addObject("examSessions", service.getOngoingExams());
 return result;
 }

 protected OngoingExamsController() {
 // protected default constructor is needed for CGLib AOPx
 service = null;
 }
}

Administrators have a global view of all ongoing exams

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Coherent View Of Global Data: View Ongoing Exams

public class ExamSessionServiceImpl implements ExamSessionService {

 // a map storing userName -> examSession mapping of currently active exams
 @Root
 private final ConcurrentHashMap<String, ExamSession> ongoingExams = new ConcurrentHashMap<String, ExamSession>(
 20000,
 0.75f,
 512);
 private final ScheduledExecutorService examTimeoutExecutor = Executors.newScheduledThreadPool(1);
 private final Map<String, Future> scheduledTimeOutTasks = new HashMap<String, Future>();
 private final ExamService examService;
 private final UserService userService;
 private final QuestionComparator questionComparator = new QuestionComparator(); // ...

 public Collection<ExamSession> getOngoingExams() {
 Collection<ExamSession> values = null;
 values = new ArrayList(ongoingExams.values());
 return values;
 }
 // ...

}

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Coherent View Of Global Data: View Ongoing Exams

public class ExamSessionServiceImpl implements ExamSessionService {

 public PageData<ExamSession> getOngoingExamsByPage(final PageRequest pageRequest) {
 List<ExamSession> values;
 PageRequest newPageRequest;
 final List<String> examSessionKeys = new ArrayList(ongoingExams.keySet());
 Collections.sort(examSessionKeys);
 int total = examSessionKeys.size();
 newPageRequest = PageRequest.adjustPageRequest(pageRequest, total);
 values = new ArrayList<ExamSession>(newPageRequest.getPageSize());

 int i = 1;
 boolean dirty = false;
 for (final Iterator<String> iter = examSessionKeys.iterator(); iter.hasNext(); i++) {
 String nextUser = iter.next();
 ExamSession nextSession = ongoingExams.get(nextUser);
 if (nextSession == null) {
 //continue if the session is no longer present in the map
 dirty = true;
 total--;
 continue;
 }
 if (i < newPageRequest.getStart()) {
 // move upto start point
 continue;
 }
 // break when reached the pageSize
 if (i >= newPageRequest.getStart() + newPageRequest.getPageSize()) break;
 values.add(nextSession);
 }
 if (dirty) newPageRequest = PageRequest.adjustPageRequest(pageRequest, total);
 final PageData<ExamSession> pageData = new PageData<ExamSession>(newPageRequest, total, values);
 return pageData;
 }
}

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Conversation State And Coherent View Of Global Data

 Conversation State
– Memory-speed access to flow data
– Coherent cluster-wide
– Database-like durability for failover…
– Yet, no database abuse: less database use == less $$$
– Handles failure of any/every node
– Completely transparent: no put-back on change

 Coherent View Of Global Data
– Coherent cluster-wide
– No round-trip to database

» Ergo, no database abuse (< $$$)
» Ergo, no caching
» Ergo, no cache freshness probs

– Memory-speed read locks
– Simple data model

Thursday, November 20, 2008

Open Source Clustering for Java

Copyright Terracotta 2007

Terracotta Gives You Your Brain Back

JEE: Complex code and
infrastructure, high reliance on
DBs

Terracotta: Lightweight code and
infrastructure, less reliance on
DBs

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Summary

 Simplicity, scalability, and availability can be friends
– Write normal Java code that works across JVMs
– Use clustered architecture patterns and TIMs for popular frameworks
– Simplicity saves $$$

 Don’t abuse the database
– Leave business data in the database, use durable NAM for application state data
– Less database utilization saves $$$

 Scale the JVM ⇒ Use Less Infrastructure
– Terracotta lets you use best of breed components in a scalable and HA way
– Throw out the maze of JMS, EJB, RMI, etc. and per-component scale
– Reduce codebase by 30% ⇒ fewer bugs, < $$$

 Centralized operational control: manage your application cluster like you
do your database

 Terracotta is open source
– Free to use through production
– Commercial versions, training, and services available

Thursday, November 20, 2008

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Resources

 Open Source (MPL-based) JVM-level clustering: http://
www.terracotta.org

 Apress / Amazon.com: “Definitive Guide to Terracotta”
– By Alex Miller, Ari Zilka, Geert Bevin, Jonas Bonér, Orion Letizi, Taylor Gautier

 Forums: http://forums.terracotta.org/

 Enterprise Offerings: http://www.terracottatech.com/

Thursday, November 20, 2008

http://www.terracotta.org
http://www.terracotta.org
http://www.terracotta.org
http://www.terracotta.org
http://forums.terracotta.org/
http://forums.terracotta.org/
http://forums.terracotta.org/
http://www.terracottatech.com/
http://www.terracottatech.com/

