
The Internal Design of Force.com’s
Multi-Tenant Architecture

Craig Weissman, Chief Software Architect
salesforce.com

True Multi-Tenancy is our Religion

Time
Technology
Advances

Major
Architectural

Shift

Business
Model

Changes

Shift

Agenda

� Our Religion

� Virtual Database

� App Model

Single tenant applications: lots of waste

App

Db

��

�

�

�

�

�

�

�
�� �

App

Db

��

�

�

�

�

�

�

�
�� �Db �

�� �

�

App

Db

�

�

�

�� �

�

�

�

Db �

�� �

�

App

Db

�

�

�

�� �

�

�

�

Multi-tenancy benefits are self-evident
But isolation is much easier said than done…

App

�

�

�� �

�

�

App

Db

Our religion:
Not all “multi-tenant” designs are created equal

App

Db

App

Db

“Can’t we create a

separate stack for just this

one customer? I promise

it’s just this one…”

Introducing the Force.com metadata-driven,
multi-tenant, Internet application platform

Poly-
Morphic

Application

Key Architectural Principles

� Stateless AppServers

� Database system of record

� No DDL

� All tables partitioned by OrgId

� Smart PKs, Polymorphic FKs� Smart PKs, Polymorphic FKs

� Creative de-normalization and pivoting

� Use every RDBMS feature/trick

Metadata, data, and pivot table structures store
data corresponding to virtual data structures

The Objects table stores metadata about
custom objects (tables)

The Fields table stores metadata about custom
fields (columns)

The Data heap table stores all structured data
corresponding to custom objects

A single slot can store various types of data
that originate from different objects

The Indexes pivot table manages tenant-
specific selective indexes

The UniqueFields pivot table facilitates
uniqueness for custom fields

The Relationships pivot table facilitates
referential integrity and optimizes joins

All data & metadata structures are partitioned
to improve performance and manageability

� Tables hash partitioned by OrgId

� Separate conn pools point to physical hosts

� App tier is also dynamically partitioned by OrgId

� Distributed metadata cache w/transactional
invalidation

Application Framework: a whole lot for free

� Native Declarative features

� Bulk Processing

� The Recycle Bin

� Full Text Search

� Smart Bulk DML

� Web Services APIs

Force.com’s native Application Framework
provides declarative development, no coding

Validation rules and simple formulas:
Business analysts can “code” these

Not so simple: Rollup-summary fields provide
for easy cross-object summaries

Force.com’s bulk processing optimizations
reduce overhead for data loads

Data definition processing is optimized to
avoid performance hits or concurrency limits

Examples:

� Sort all records by primary key before attempting DML

� Operate on tables in deterministic order

� Slot reallocation for field datatype change

� Deferred calculation for new rollup-summary field� Deferred calculation for new rollup-summary field

� Background processing of mass changes

The Recycle Bin: Smart Undeletes

Restore

� Individual object instances
(records)

� Related object instances
(parent/child records)

� Entire fields and objects
(dropped columns and
tables)

Force.com’s full-text search engine

� Asynchronously maintains
indexes for all text fields

� MRU caches contain recently
updated objects

� Optimizes ranking of search
result records based on result records based on
current user, modification
history, and weighting
preferences

Multi-tenant Query Optimization Principles

� Consistent SQL generation across the application

� Deep awareness of pivot table structure

– Flex schema does impose a cost

� Tenant, user, object, fields statistics are crucial

� No runaway queries allowed� No runaway queries allowed

� Deep integration with the sharing model

Force.com’s query optimizer writes optimal
queries for internal data access operations

Multi-tenant
optimizer
statistics

The optimizer considers pre-query selectivity
measurements when writing a query

Pre-Query
Selectivity

Measurements

… nested loops join; drive using view of rows that the user can see.LowLow

Write final database access query, forcing …
FilterUser

… use of index related to filter.HighHigh

… ordered hash join; drive using Data table.LowHigh

… use of index related to filter.HighLow

Apex: Force.com’s procedural frontier

Apex code is stored as metadata, interpreted at
runtime, and cached for scalability

Apex is deeply integrated with platform features

� Bulk DML

� Email and messaging

� Asynchronous processing (Futures)

� XmlStream / HTTP (RESTful) services classes

� Declarative exposure as new Web Services� Declarative exposure as new Web Services

Force.com governs Apex code execution

Limits on:

� CPU

� Memory

� # of DML statements

� # calculations

� # web service calls� # web service calls

� … and more

Unit tests must accompany Apex code

� Required 75% code coverage

� Profiling is built into the platform

� Run during application install

� All tests are run before each
platform release by us

Force.com is a proven multi-tenant application
platform that performs and scales

4.0

5.0

6.0

7.0

8.0

750

1,000

1,250

Page
Response
Time (ms)

Quarterly
Transactions

(billions)

0.0

1.0

2.0

3.0

4.0

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2

0

250

500

2005 2006 2007

Fiscal Year

Concluding Remarks

� PaaS is a major architectural
shifts

� PaaS is Application focused,
high level of abstraction

� Force.com is the most
mature, proven PaaS offering mature, proven PaaS offering
available today

� Optimized for fast, secure,
and reliable multi-tenant
application development and
deployment

