Behaviour-Driven
Development

A road to effective design and clean code

Dan North - ThoughtVVorks




My name is Dan

| am a developer

| am a coach

| am your guide

© 2008 Dan North, ThoughtWorks



Part |:ineffective design

and ugly code

© 2008 Dan North, ThoughtWorks



Project failures - a field guide

The project comes in too late

or costs too much to finish

The application does the wrong thing
It is unstable in production
It breaks the rules

The code is impossible to work with

© 2008 Dan North, ThoughtWorks



How we deliver software

Top-down

Bottom-up

Why do we do this?

© 2008 Dan North, ThoughtWorks



Part 2: effective design

and clean code

© 2008 Dan North, ThoughtWorks



If we could deliver better

Only focus on high-value features

Flatten the cost of change

of anything, at any stage
Prioritise often, change often

Adapt to feedback

Learn!

© 2008 Dan North, ThoughtWorks



What we would need

Streaming requirements
Evolving design

Code we can change
Frequent code integration

Run all the regression tests often

© 2008 Dan North, ThoughtWorks



Part 3: Getting there

with BDD




A definition of BDD

“Behaviour-driven development is about
implementing an application by
describing it from the point of view of
its stakeholders”™

- Me ;)

© 2008 Dan North, ThoughtWorks



BDD is derivative

“Second generation” agile methodology
- XP, especially TDD and CI
- Domain-Driven Design
- Acceptance Test-Driven Planning
- Neurolinguistic Programming (NLP)

- Systems Thinking

© 2008 Dan North, ThoughtWorks



What makes BDD?

Getting the words right

Enough is enough

...agree on “Done”

Outside-in

Interactions

People over Process!

© 2008 Dan North, ThoughtWorks



“Getting the words right”

“When | use a word”, said Humpty Dumpty in
a rather scornful tone, “it means just what |
want it to mean, neither more nor less”

Lewis Carroll - Through the Looking Glass

© 2008 Dan North, ThoughtWorks



“Getting the words right”

Model your domain

...and identify your core domain

Create a shared language

...and make it ubiquitous

Determine its bounded context

...and think about what happens at the edges

© 2008 Dan North, ThoughtWorks



“Enough up-front thinking”

|dentify the desired outcomes

Do enough to feel safe to estimate

...and keep a note of your assumptions

Then “blink estimate” - with people you trust

...because anything else is false confidence

Estimation is fractal - don’t misunderestimate!

© 2008 Dan North, ThoughtWorks



A story is a unit of delivery

Story 28 - View pau

As anvAnaesthetist
I want to-view the Patient’s surgical history
So-that I car choose the most suitable gas

© 2008 Dan North, ThoughtWorks



Try to focus on the value

Story 28 - View patient details

Inwovder to-choose the most suitable gas
anvAnaesthelist
wonty to- view the Patient’ s surgical history

© 2008 Dan North, ThoughtWorks



Try to focus on the value

Story 29 - Log patient details

Inwovder to-choose the most suitable gas
anvAnaesthetist

wandy other Anaesthetisty to-log the
Patient’s suwgery details for later retrieval

© 2008 Dan North, ThoughtWorks



Agree on “Done”

Define acceptance criteria as scenarios

Scenawrio: existing patient withv history

Giverw we hawe av patient o file

And the patient has had previous suwrgery
Whew I request the Patient’s history

Thenw I should see all the previous treatimenty

© 2008 Dan North, ThoughtWorks



Automate the scenarios

Each step corresponds to running code

Giverv we hawve av patient o file

In Ruby:

Given “we have a patient on file” do
@patient = Patient.create
end

In Java:

@Given(“we have a patient on file”)
public void createPatient() {
patient = patientFactory.create();

¥

© 2008 Dan North, ThoughtWorks




Code-by-Example to
implement

Also known as TDD
Start at the edges with what you know
Implement outermost objects and operations

Discover collaborators, working inwards

and mock them out for now

Repeat until “Done”

© 2008 Dan North, ThoughtWorks



Then bring it all together

Examples become code tests

...ahd documentation

Scenarios become acceptance tests

...which become regression tests

Automation is key

© 2008 Dan North, ThoughtWorks



Inside-out - an example

Map<int, Map<int, int>> portfoliosByTraderld;

1f (portfolioldsByTraderId.get(trader.getld())
.containsKey(portfolio.getId())) {...}

Becomes:

1f (trader.canView(portfolio)) {...}

© 2008 Dan North, ThoughtWorks



The team

The stakeholders

The BAs
The QAs
The developers

The project manager

© 2008 Dan North, ThoughtWorks



The destination

© 2008 Dan North, ThoughtWorks



Effective Design and
Clean Code

...has tangible stakeholder value

...is delivered on time, incrementally
...is easy to deploy and manage

...is robust in production

...Is easy to understand and communicate

BDD is a step in the right direction

© 2008 Dan North, ThoughtWorks




Thank you

Any questions!

dan.north@thoughtworks.com
http://dannorth.net

http://lizkeogh.com
http://jbehave.org

http://rspec.info

© 2008 Dan North, ThoughtWorks



Bibliography

Extreme Programming explained (2nd edition)
- Kent Beck

Domain-Driven Design - Eric Evans

The Art of Systems Thinking

and

The Way of NLP - Joseph O’Connor

© 2008 Dan North, ThoughtWorks



