
in Ruby

The State

of the DSL Art
Glenn Vanderburg

Relevance, Inc.

glenn@thinkrelevance.com

State of the Art

Focus on internal DSLs

Rubyists pushing the leading edge

Ruby’s features make it a good match

DSLs Are Overhyped

Evolution

Origins

The whole idea of internal DSLs apparently

originated in Lisp.

In Lisp, you don’t just write your program

down toward the language, you also

build the language up toward your program.

—Paul Graham

Lisp

(task "warn if website is not alive"
 every 3 seconds
 starting now
 when (not (website-alive? "http://example.org"))
 then (notify "admin@example.org" "server down!"))

Functional Languages

Many functional languages lend themselves

to internal DSLs.

Internal DSLs were a design goal of Haskell.

keepleft (p :>: ps)
 | keepleft p = case partitionFL keepleft ps of
 a :> b -> p :>: a :> b
 | otherwise = case commuteWhatWeCanFL (p :> ps) of
 a :> p' :> b -> case partitionFL keepleft a of
 a' :> b' -> a' :> b' +>+ p' :>: b

Ruby, Out of the Box

Declaring object properties:
attr_reader :id, :age
attr_writer :name
attr_accessor :color

Not syntax, just methods (defined in Module)

Here’s How To Do It

class Module
 def attr_reader (*syms)
 syms.each do |sym|
 class_eval %{def #{sym}
 @#{sym}
 end}
 end
 end
end

And attr_writer …

class Module
 def attr_writer (*syms)
 syms.each do |sym|
 class_eval %{def #{sym}= (val)
 @#{sym} = val
 end}
 end
 end
end

Mathieu Bouchard’s X11

Library

DestroySubwindows

window: WINDOW

Errors: Window
ChangeSaveSet

window: WINDOW

mode: {Insert, Delete}

Errors: Match, Value, Window

ReparentWindow

window, parent: WINDOW

x, y: INT16

Errors: Match, Window

def_remote :close_subwindows, 5, [Self]
def_remote :change_save_set, 6, [Self,
 [:change_type, ChangeMode, :in_header]]
def_remote :reparent, 7, [Self,
 [:parent, Window],
 [:point, Point]]

Styles Have Changed

JDWP.add_command_set :ObjectReference, 9 do |set|
 set.add_command :ReferenceType do |cmd|
 cmd.description = "Returns the runtime type of the object. The ..."
 cmd.out_data :objectID, :object, "The object ID"
 cmd.reply_data :byte, :refTypeTag, "Kind of following reference type."
 cmd.reply_data :referenceTypeID, :typeID, "The runtime reference ..."
 end
end

ObjectReference Command Set (9)
ReferenceType Command (1)

Returns the runtime type of the object. The runtime type will be a class or an array.

Out Data

Reply Data

objectID object The object ID

byte refTypeTag Kind of following reference type.

referenceTypeID typeID The runtime reference type.

Dave’s Summer Project

Dave Thomas, RubyConf 2002

“How I Spent My Summer Vacation”

class RegionTable < Table
 table "region" do
 field autoinc, :reg_id, pk
 field varchar(100), :reg_name
 field int, :reg_affiliate, references(AffiliateTable,
 :aff_id)
 end
end

Rails
class CreateRegions < ActiveRecord::Migration
 def self.up
 create_table :regions do |t|
 t.string :name
 t.belongs_to :affiliate
 end
 end

 def self.down
 drop_table :regions
 end
end

class Region < ActiveRecord::Base
 belongs_to :affiliate
end

What Makes

Internal DSLs

Special?

General-Purpose Constructs

Types

Literals

Declarations

Expressions

Operators

Statements

Control Structures

Specialized Constructs

Most DSLs also deal with things you don’t

usually find in general-purpose languages:

Context-dependence

Commands and sentences

Units

Large vocabularies

Hierarchy

Contexts

Interval = new_struct(:start, :end) do
 def length
 self.start - self.end
 end
end

create_table :regions do |t|
 t.string :name
 t.belongs_to :affiliate
end

Implementing Contexts

def new_struct (*args, &block)
 struct_class = Class.new
 struct_class.class_eval { attr_accessor *args }
 # define initialize method
 struct_class.class_eval(&block) if block_given?
 struct_class
end

def create_table(table_name, options = {})
 table_definition = TableDefinition.new(options)

 yield table_definition

 if options[:force] && table_exists?(table_name)
 drop_table(table_name, options)
 end

 execute table_definition.to_sql
end

Commands and Sentences

Multipart, complex statements or

declarations.

Example: Dave’s database library

Let’s take that apart.

field autoinc,:reg_id, pk
field int, :reg_affiliate, references(AffiliateTable,
 :aff_id)

Commands and Sentences

Overall, it’s just a method call.

The first parameter—the type—is a method

call.

The second parameter is a symbol.

Additional parameters are method calls.

field(autoinc, :reg_id, pk)

Modern Sentences

From a Rails project:

has_many :favorites, :order => :position,
 :conditions => {:state => 'public'}

has_many :roles, :through => :projects, :uniq => true

validates_length_of :login, :within => 3..40,
 :on => :create

validates_presence_of :authority, :if => :in_leadership_role
 :message => "must be authorized for leadership."

Implementing Sentences

Once again, it’s just a method call.

First parameter is a symbol (exploits naming

conventions).

Second parameter is an implicit hash.

Implementation pattern:

def declaration(thing, options={})
 # validate and process options
 # create and store metadata
 # define custom methods
end

has_many(:roles, {:through => :projects,
 :uniq => true})

Units

General-purpose languages deal with scalars

Most domain-specific languages deal with

quantities expressed using units.

From Rails:

A time interval
3.years + 13.days + 2.hours
Four months from now, on a Monday
4.months.from_now.next_week.monday

Implementing Units

The easy part: classes representing

quantities.

Use operator overloading if it makes sense!

May require mixed-base arithmetic.

Next: natural expression

Augment the built-in classes
class Numeric
 def minutes; self * 60; end
 def hours; self * 60.minutes; end
 # etc.
end

Large Vocabularies

Sometimes you need a command structure

that’s essentially open-ended.

Roman numerals:

XmlMarkup class:

Roman.CCXX
Roman.XLII

xm.em("emphasized")
xm.a("A Link", :href => "http://example.com/")
xm.target(:name => "compile", "option" => "fast")

Large Vocabularies

Override method_missing.

Here’s the Roman numeral method:

Be careful! Difficult bugs lurk here.

class Roman
 def self.method_missing (method_id)
 str = method_id.id2name
 roman_to_int(str)
 end
end

Hierarchy

XmlMarkup again:

xml.html {
 xml.head {
 xml.title("History")
 }
 xml.body {
 xml.h1("Header")
 xml.p("paragraph")
 }
}

Implementing Hierarchy

Called from method_missing:

You could use instance_eval to avoid typing

“xml.” before every call. But don’t.

def element (elem_name, opts={})
 write "<#{elem_name}#{encode_opts(opts)}"
 if block_given?
 puts ">#{yield}</#{elem_name}>"
 else
 puts "/>"
 end
end

Perspective

Ruby’s DSL Strengths

Dynamic and reflective

Blocks allow writing new control structures

Declarations are executable

Built-in contexts

Only slightly less malleable than Lisp (no

macros)

Syntax Matters

Ruby’s syntax is great for DSLs

Neutral and unobtrusive

Enough to distinguish different kinds of

constructs

Not enough to complicate straightforward

statements

Most punctuation is optional

DSLs != Magic Pixie Dust

DSLs don’t magically

make your software

better.

They can be

overused.

They don’t always

make code clearer.

Photo credit: Tracey Parker

Domain Language

Essence and Accident

Good Software Design

Eliminate as much of the accidental

complexity as possible.

Separate the rest.

Language and program evolve together. Like

the border between two warring states, the

boundary between language and program is

drawn and redrawn, until eventually it comes

to rest along the mountains and rivers, the

natural frontiers of your problem. In the end

your program will look as if the language had

been designed for it. And when language and

program fit one another well, you end up with

code which is clear, small, and efficient.

—Paul Graham

def create
 @post = Post.new(params[:post])

 respond_to do |format|
 if @post.save
 flash[:notice] = 'Post was successfully created.'
 format.html { redirect_to @post }
 format.xml { render :xml => @post,
 :status => :created,
 :location => @post }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @post.errors,
 :status => :unprocessable_entity }
 end
 end
end

DSLs != Polyjuice Potion

Create DSLs with

“normal” constructs:

Objects and methods

Reflection

Openness

Test them normally

as well.

Culture is limiting

extreme uses.

Photo credit: Jo Naylor

Barrier to Understanding?

The language is for people who understand

the domain.

The things that are implicit are accidental

complexity.

Learning the language aids in understanding

the domain.

Good API Design

Creating DSLs with everyday constructs is

powerful.

You can refactor to them as you find

duplication, complexity.

Internal DSLs are just a part of good API

design in Ruby.

Library design is language design.

—Bell Labs Proverb

DSLs Are Cool!

But what are they really good for?

Solid domain modeling

More and better options when refactoring

Customer communication

Clean separation of essence and accident

