Hooking Stuff Together —
Programming the Cloud

Gregor Hohpe

Govgle

WwWw.ealpatterns.com
WWW.conversationpatterns.com

Yesterday’s Software Environment

Today’s

. Cnllaboratlng services mstead of

/ ~“monolithic applications
» The cloud as middleware platform

e Services are all about interaction

» Connected, but loosely coupled

N

L ess Is More?

@ NO Call Stack

@ NO Transactions

@ NO Promises

@ NO Certainty

@ NO Ordering Constraints

@ NO Assumptions

Scary? Yes!
Cool? Yes!
Way to go? Yes!

A Simple Interaction

System A System B

¢ >

I\

What if the response does not come?

Communication Problems

System A System B

é >

N

Lost Request?

Lost Response?
System B Crashed?
Retry?

Delayed Response

System A System B

é >

N\

Executed Once?
Executed Twice?

Inherent State Uncertainty

@ System A is never 100% sure what state
System B is In

@ This problem does not occur in a monolithic
system

@ Compare Byzantine General’'s Problem
Army 1 Army 2

>
ﬁ . “Unreliable Messaging” ﬁ
Attack? Attack?
. Enemy

th

Still An Issue With HTTP

@ Hardware failure
@ Network failure
@ Time-outs

@ Partial response

Total: $219.73

Buy!

What About Distributed Transactions?

@ Require coordinator

@ Even 2 Phase Commit has windows of
uncertainty

@ Not practical for long running interactions

Locks not practical / economical
Isolation not possible / practical

@ Usually not supported

@ Don’t scale

“Life Beyond Distributed Translations -

an Apostate’s Opinion”
--Pat Helland

Now What?

inty

th uncertai

ve wi

QL

@ Simplicity is King

@ Interaction

@ Asynchrony

@ New_programming models

2 Be
1 @ Patterns Renaissance

Ime

No0ld the Run-t

Living With Uncertainty

ACID (before) ACID (today)
@ Atomic @ Associative
@ Consistent @ Commutative
@ Isolated @ l[dempotent
@ Durable @ Distributed
Predictive Flexible

Accurate Redundant

Starbucks Does not Use 2-Phase Commit Either

@ Start making coffee before customer pays
@ Reduces latency

@ What happens If...

Customer rejects drink # Remake drink
Retry

Coffee maker breaks Refund money

Compensation

Customer ca Discard beverage

Write-off

Simplicity is King

@ Even simple things become complicated in a
distributed environment

@ If it looks complicated on paper it’s likely to be
Impossible in practice

@ If you can’t understand it, other developers likely
won't either

@ A well understood failure scenario can be better
than an incomprehensible and unproven “failsafe”
system

Q‘J

Focus on Interaction

@ In the OO world interaction is essentially free

@ Powerful structural mechanisms: inheritance,
composition, aggregation

@ In the cloud, more focus shifts to interaction.
Structural composition mechanisms are limited.

Q‘ﬂ

Conversations

@ Series of re

@ Not handleo

@ Endpoints keep some conversation state

ated messages between parties

at lower layer

@ Protocol design

Internal State:
Processing

Payment 7\

Conversation State

y

————————

e

Internal State:
Waiting for
Payment

4

RN

Internal State:
Making Drinks

Asynchrony

@ Exchange through messages, not RPC

@ Waiting for the results of an HTTP request is not a
smaurt use of a 3 GHz processor

@ Request and response message typically handled
by different parts of your program, even if the
same TCP connection

@ Reduced assumptions about timing and state

Programming Abstraction: MapReduce

@ Represent computing problems as Map and Reduce step
@ Inspired by functional programming
@ “Embarrassingly parallel problems”

@ True framework: don’t call us, we’ll call you

map(in_key, data)
> list(key, value)

reduce(key, list(values))
- list(out_data)

http://research.google.com/archive/mapreduce.html

Q‘ﬁ

MapReduce: Word Frequency

To be or not to be

map(String key, String value): map
// key: document name
// value: document contents to |1 not|1
for each word w in value: be |1 to |1
EmitInt diat , 1) ;
mitIntermediate(w) or 11 be |1
'Shuffle|

be 1/1 or
not|1 to 111

reduce(String key, Iterator values):
// key: a word
// values: a list of counts

int result = 0; reduce
for each v in values:

result += ParseInt(v); be: 2 or: 1
Emit(key + “: " + result); not: 1 to: 2

J

MapReduce Run-time

@ Distribute data among many machines, execute
same computation at each machine on its dataset

@ Open source implementation: Hadoop

Sharding
| In|pju|t Dalt|a
! : !
Map Map Map

Task 1 Task 2 Task 3

Sort & Sort &
Group Group
Reduce Reduce
Task 1 Task 2

Domain Specific Language: Sawzall

@ Commutative and associative operations allow parallel
execution and aggregation

Input Filter Transform Aggregate Output
3 Count=6
5 3571234578 Total = 35
7 Sum_sq = 221
N W (-osa e X |-
5
g\/_\ 357578 sum, top, max \/_\
count: int;
total: float;

x: float = 1nput;

count <- 1;
total <- X;

http://labs.google.com/papers/sawzall.ntml

Q‘ﬁ

Behold the Run-time

@ Some programming abstractions are great, e.g.
MapReduce

@ In a single-threaded call-stack machine,
programming model and execution model match
fairly closely

@ In a highly distributed dynamic system, they are
very different!

@ Monitoring, run-time analysis, and visualization
critically important

Q‘Q

Behold the Run-time

@ Call Stack

void a() {
b(O;
}

void b() {
cO;
dO;

}

A B

C

D

@ MapReduce

map(in_key, data)
- list(key, value)

reduce(key, list(values))
- list(out_data)

———————————————————————————— -
IF Map Task 1 -: Ir Map Task 2 I Ir Map Task 3 |
| (N o |
| I | b | }
| Lo L '
| Lo b '
| (N o |
| L L '
| Kvkdviay | | ki I [v | aisy i IR
| Partitioning Functio | | Fartitioning Function | | Partiti g Function I

——————————

My Work

@ Messaging Patterns (65) www.eaipatterns.com
Messaging Systems A
Messaging Channels ENTERPRISE 7 £

_ INTEGRATION ™
Message Construction PATTERNS

Message Routing
Message Transformation
Messaging Endpoints
System Management

@ Conversation Patterns

WWWw.conversationpatterns.com

Discovery
Establishing a Conversation - ‘
. . NTERPRISE =
Multi-party Conversations INTEGRATION ™
. - e
Reaching agreement PATTERNS [[

Resource Management
Error Handling

Patterns — 10 Years After GoF

@ New programming models bring new patterns.

@ “Mind sized” chunks of information

(Ward Cunningham)

@ Human-to-human communication

@ Expresses intent (the “w

@ Makes assumptions exp

ny” vs. the “how”)

ICIt

@ Observed from actual experience

Multiple Service Providers

Provider 1

~ 1%1@~=o/’@q

Request Channel T IN
—

Provider 2

Consumer

AR

Reply Channel

@ Request message can be consumed by more than one
service provider

@ Point-to-Point Channel supports Competing Consumers,
only one service receives each request message

@ Channel queues up pending requests

Multiple Service Providers

@ Reply messages get out of

Coneumer | SETVice 1 Service 2 Ssequence
umer slow fast
(slow) (fast) @ How to match request and
- R tl :
o . reply messages?
L1
. Request 2 Only send one request at a
5 JReply 2 | time
5 - very inefficient
. Reply1 Rely on natural order
= = 5 > bad assumption

Pattern: Correlation ldentifier

Consumer Message
Identifier

— & [@—

Request Channel ~

— Provider 1

Sl T

—| Provider 2

N
— —a \
4_
» Z Response Channel N

@ Equip each message with a unique identifier

Message ID (simple, but has limitations)
GUID (Globally Unigue ID)
Business key (e.g. Order ID)

Correlate
Request &
Reply

@ Provider copies the ID to the reply message

@ Consumer can match request and response

Conversation Pattern: Dynamic Discovery

Corés)ider
Request Provider
@ Pub-Sub — 1
@) —— .
| Provider
< 2
‘@) Choose (3 Respond
| Pr0\§ider
@ Interact

Broadcast request
Provider(s) consider whether to respond (load, suitability)
Interested providers send responses
Requestor chooses “best” provider from responses
Requestor initiates interaction with chosen provider

@ Examples: DHCP, TIBCO Repository discovery

Conversation Pattern: Renewing Interest

Automatic Expiration

Register

Lease

<

(Renew Interval)

Renew Interest

Subscriber

>
Provider

Renewal Request

Register

<€

Renewal Request

»
L

Renewal Confirm

Subscriber

»

Provider

@ “Lease” model
@ Heartbeat / keep-alive

@ Subscriber has to renew
actively

@ Example: Jini

@ “Magazine Model”
@ Subscriber can be simple

@ Provider has to manage state
for each subscriber

Keep These in Mind

@ Live with uncertainty

@ Simplicity is King

@ Interaction

@ Asynchrony

@ New programming models
@ Behold the Run-time

@ Patterns Renaissance

FIn

