
Hooking Stuff Together –

Programming the CloudProgramming the Cloud

Gregor Hohpe

www.eaipatterns.com
www.conversationpatterns.com

Yesterday’s Software Environment
Today’s

• Collaborating services instead of
monolithic applications

• The cloud as middleware platform

• Services are all about interaction

1

• Connected, but loosely coupled

Less is More?

NO Call Stack

NO Transactions

NO PromisesNO Promises

NO Certainty

NO Ordering Constraints

NO Assumptions

2

Scary? Yes!

Cool? Yes!

Way to go? Yes!

System A System B

A Simple Interaction

What if the response does not come?

3

What if the response does not come?

Communication Problems

System A System B

Lost Request?

Lost Response?

4

Lost Response?

System B Crashed?

Retry?

Delayed Response

System A System B

Executed Once?

5

Executed Once?

Executed Twice?

Inherent State Uncertainty

System A is never 100% sure what state
System B is in

This problem does not occur in a monolithic This problem does not occur in a monolithic
system

Compare Byzantine General’s Problem

“Unreliable Messaging”

Army 1 Army 2

6

Attack? Attack?

Enemy

Still An Issue With HTTP

Hardware failure

Network failure

Time-outs

Total: $219.73

Time-outs

Partial response

Buy!

7

Buy!

What About Distributed Transactions?

Require coordinator

Even 2 Phase Commit has windows of
uncertaintyuncertainty

Not practical for long running interactions
• Locks not practical / economical
• Isolation not possible / practical

Usually not supported

Don’t scale

8

Don’t scale

“Life Beyond Distributed Translations –
an Apostate’s Opinion”

--Pat Helland

Now What?

Live with uncertainty

Simplicity is King

Interaction Interaction

Asynchrony

New programming models

Behold the Run-time

9

Behold the Run-time

Patterns Renaissance

Living With Uncertainty

Atomic Associative

ACID (before) ACID (today)

Atomic

Consistent

Isolated

Durable

Associative

Commutative

Idempotent

Distributed

10

Predictive
Accurate

Flexible
Redundant

Starbucks Does not Use 2-Phase Commit Either

Start making coffee before customer pays

Reduces latency

What happens if…What happens if…

Customer rejects drink

Coffee maker breaks

Remake drink

Refund money

Retry

11

Customer cannot pay

Coffee maker breaks Refund money

Discard beverage
Write-off

Compensation

Simplicity is King

Even simple things become complicated in a
distributed environment

If it looks complicated on paper it’s likely to be If it looks complicated on paper it’s likely to be
impossible in practice

If you can’t understand it, other developers likely
won’t either

A well understood failure scenario can be better
than an incomprehensible and unproven “failsafe”

12

than an incomprehensible and unproven “failsafe”
system

Focus on Interaction

In the OO world interaction is essentially free

Powerful structural mechanisms: inheritance,
composition, aggregationcomposition, aggregation

In the cloud, more focus shifts to interaction.
Structural composition mechanisms are limited.

13

Conversations

Series of related messages between parties

Not handled at lower layer

Endpoints keep some conversation stateEndpoints keep some conversation state

Protocol design

Order

Invoice

Internal State:
Waiting for
Payment

Internal State:
Processing
Payment

Conversation State

14

Payment

Drinks
Internal State:
Making Drinks

Asynchrony

Exchange through messages, not RPC

Waiting for the results of an HTTP request is not a
smart use of a 3 GHz processorsmart use of a 3 GHz processor

Request and response message typically handled
by different parts of your program, even if the
same TCP connection

Reduced assumptions about timing and state

15

Programming Abstraction: MapReduce

Represent computing problems as Map and Reduce step

Inspired by functional programming

“Embarrassingly parallel problems”“Embarrassingly parallel problems”

True framework: don’t call us, we’ll call you

map(in_key, data)
� list(key, value)

16

reduce(key, list(values))
� list(out_data)

http://research.google.com/archive/mapreduce.html

MapReduce: Word Frequency

map(String key, String value):
// key: document name
// value: document contents

To be or not to be

to not1 1

map

// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word

be

or

to

be

1

1

1

1

Shuffle

be or

not to

1 1

1 1

1

1

17

// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(key + “: “ + result);

reduce

not to1 1 1

be: 2
not: 1

or: 1
to: 2

MapReduce Run-time

Distribute data among many machines, execute
same computation at each machine on its dataset

Open source implementation: HadoopOpen source implementation: Hadoop

Map
Task 1

Map
Task 2

Map
Task 3

I n p u t D a t a
Sharding

18

Sort &
Group

Sort &
Group

Reduce
Task 1

Reduce
Task 2

key

Domain Specific Language: Sawzall

Commutative and associative operations allow parallel
execution and aggregation

count: table sum of int;
total: table sum of float;

19

total: table sum of float;

x: float = input;

emit count <- 1;
emit total <- x;

http://labs.google.com/papers/sawzall.html

Behold the Run-time

Some programming abstractions are great, e.g.
MapReduce

In a single-threaded call-stack machine, In a single-threaded call-stack machine,
programming model and execution model match
fairly closely

In a highly distributed dynamic system, they are
very different!

Monitoring, run-time analysis, and visualization

20

Monitoring, run-time analysis, and visualization
critically important

Behold the Run-time

Call Stack MapReduce
void a() {
b();

}

map(in_key, data)
� list(key, value)

reduce(key, list(values))
Void b() {
c();
d();

}

A B C D

reduce(key, list(values))
� list(out_data)

21

My Work

Messaging Patterns (65)
• Messaging Systems
• Messaging Channels
• Message Construction

www.eaipatterns.com

• Message Construction
• Message Routing
• Message Transformation
• Messaging Endpoints
• System Management

Conversation Patterns
• Discovery
• Establishing a Conversation

www.conversationpatterns.com

22

• Establishing a Conversation
• Multi-party Conversations
• Reaching agreement
• Resource Management
• Error Handling

Patterns – 10 Years After GoF

New programming models bring new patterns.

“Mind sized” chunks of information
(Ward Cunningham)(Ward Cunningham)

Human-to-human communication

Expresses intent (the “why” vs. the “how”)

Makes assumptions explicit

Observed from actual experience

23

Observed from actual experience

Multiple Service Providers

Consumer

Provider 1

Provider 2
Request Channel

Request message can be consumed by more than one
service provider

Consumer

Reply Channel

24

Point-to-Point Channel supports Competing Consumers,
only one service receives each request message

Channel queues up pending requests

Multiple Service Providers

Reply messages get out of
sequence

How to match request and
reply messages?

Service 1
(slow)

Request 1

Service 2
(fast)

Consumer

Reply 1

reply messages?
• Only send one request at a

time
� very inefficient

• Rely on natural order
� bad assumption

Request 1

Request 2

Reply 2

25

Pattern: Correlation Identifier

Message
Identifier 1

2

Provider 1

Provider 2
Request Channel

1 2
1 2

Consumer

Equip each message with a unique identifier
• Message ID (simple, but has limitations)
• GUID (Globally Unique ID)

2 Provider 2

Response Channel

12 12
12

Correlation
Identifier

Correlate
Request &

Reply

26

• GUID (Globally Unique ID)
• Business key (e.g. Order ID)

Provider copies the ID to the reply message

Consumer can match request and response

Conversation Pattern: Dynamic Discovery

ProviderProvider
1

ProviderProvider
2

Pub-Sub
Request

1

2
Consider

Choose

1. Broadcast request

2. Provider(s) consider whether to respond (load, suitability)

2

ProviderProvider
3

3 Respond
4

5 Interact

27

3. Interested providers send responses

4. Requestor chooses “best” provider from responses

5. Requestor initiates interaction with chosen provider

Examples: DHCP, TIBCO Repository discovery

Lease
(Renew Interval)

Conversation Pattern: Renewing Interest

“Lease” model
Heartbeat / keep-alive
Subscriber has to renew

Register

Automatic Expiration

∆t Subscriber has to renew
actively
Example: Jini

“Magazine Model”
Subscriber can be simple

Renew Interest

Renewal Request

Register

Renewal Request

Subscriber Provider

∆t

∆t

28

Renewal Confirm

Subscriber can be simple
Provider has to manage state
for each subscriber

Renewal Request

ProviderSubscriber

∆t

Keep These in Mind

Live with uncertainty

Simplicity is King

Interaction

Asynchrony

New programming models

Behold the Run-time

29

Behold the Run-time

Patterns Renaissance

Fin

