
CouchDB

Relax!
Actually 50 slides for 60 minutes. Good luck.

Who’s talking?

Jan Lehnardt

CouchDB Developer

jan@apache.org

And you? Developers, DBAs, architects?
Know CouchDB? Like CouchDB? Use CouchDB?

mailto:jan@apache.org
mailto:jan@apache.org

CouchDB —
Built for the Future
“640k processors should be enough for
anybody.”

Single-User Machines
Back then

Multi-User Machines
Now

Application: Science
Back then

Application: The Web
Today

Monolithic Machines
Back then

Lots of Small Servers
Today

CPU, RAM and Disks == $$$
Back then

Components cheaper
Now

RDBMS vs
Just Storing Data

Sorry for bashing!

Real World Data

Bills, tax forms, letters…

Same type != same structure

Can be out of date

Natural data behaviour

Actual data record, no pointer

RDBMSs

1) beware of speed considerations without having an app to measure
2) or use an ORM which turns out to be a pain in the back for all sorts of reasons
3) Most Data is not inherently relational

RDBMSs

Design schema upfront

1) beware of speed considerations without having an app to measure
2) or use an ORM which turns out to be a pain in the back for all sorts of reasons
3) Most Data is not inherently relational

RDBMSs

Design schema upfront

Write or use software to
translate your data into
that schema … and back

1) beware of speed considerations without having an app to measure
2) or use an ORM which turns out to be a pain in the back for all sorts of reasons
3) Most Data is not inherently relational

RDBMSs

Design schema upfront

Write or use software to
translate your data into
that schema … and back

Friction?
1) beware of speed considerations without having an app to measure
2) or use an ORM which turns out to be a pain in the back for all sorts of reasons
3) Most Data is not inherently relational

Attendee
Confusion
Diagram

not interested in low-concurrency sites, denormalization

Attendee
Confusion
Diagram

not interested in low-concurrency sites, denormalization

CouchDB Documents

CouchDB Documents

Isolated data records
called Documents

No schema (!)

and semi-
structured

data records that make up the app’s data objects

{
 "_id": "BCCD12CBB",
 "_rev": "AB764C",

 "type": "person",
 "name": "Darth Vader",
 "age": 63,
 "headware":
 ["Helmet", "Sombrero"],
 "dark_side": true
}

{
 "_id": "BCCD12CBB",
 "_rev": "AB764C",

 "type": "person",
 "name": "Darth Vader",
 "age": 63,
 "headware":
 ["Helmet", "Sombrero"],
 "dark_side": true
}

UUID

{
 "_id": "BCCD12CBB",
 "_rev": "AB764C",

 "type": "person",
 "name": "Darth Vader",
 "age": 63,
 "headware":
 ["Helmet", "Sombrero"],
 "dark_side": true
}

optimistic locking

{
 "_id": "BCCD12CBB",
 "_rev": "AB764C",

 "type": "person",
 "name": "Darth Vader",
 "age": 63,
 "headware":
 ["Helmet", "Sombrero"],
 "dark_side": true
}

CouchDB Documents

Supported by all major
languages

No database abstraction
needed

Revisions, Attachments

Create: HTTP POST /db/BCCD12CBB
 Read: HTTP GET /db/BCCD12CBB
Update: HTTP PUT /db/BCCD12CBB
Delete: HTTP DELETE /db/BCCD12CBB

Working with Documents

— Jacob Kaplan-Moss, jacobian.org

“Django may be built for the
Web, but CouchDB is built
of the Web.”

“Reading the CouchDB API.
Smiling.”

— Tim Bray, on Twitter

$ curl -X GET http://server/ \

 database/document

{"_id":"ABC","_rev":"1D4","data
":...}

$

http://server
http://server

Recap

Versioned Object Store

Optimistic Locking

REST API

Revisions, Attachments

Views
of Keys and Values

Views

Filter, Collate, Aggregate

Powered by MapReduce

Design documents
functions get executed, you don’t do that

View Examples – Docs by Date

Key Value

"2007-10-12 20:13:12" {"_id":"..."}

"2007-12-26 08:37:55" {"_id":"..."}

"2008-02-03 10:22:34" {"_id":"..."}

"2008-05-01 14:16:11" {"_id":"..."}

View Examples – Docs by Date

function(doc) {
 emit(doc.date, doc);
}

"2007-10-12 20:13:12" {"_id":"..."}

Views

Built incrementally…

…and on demand

Reduce optional

map/reduce can be parallelised

Recap

Versioned Object Store, Op-
timistic Locking, REST API

MapReduce Views

Revisions, Attachments

Replication

Replication
Easy Data Synchronization Without Headaches

Replication

Take your data with you

CouchDB makes it easy to
synchronise machines

rsync-like
Large spectrum of architectures:
 - P2P, Failover, Load Balancing, Backup
Conflicts: auto-detect & resolve, data consistency

Built for the Future

Written in Erlang – a telco-
grade concurrent platform

Non-locking MVCC and
ACID compliant data store

Erlang Processes + messaging
Ericsson AXD 301 - nine nines - 1/30th second per year
Crash resistant

Recap

Versioned Object Store, Op-
timistic Locking, REST API,
MapReduce Views

Insane Concurrency Re-
plication & Crash Resistant

Revisions, Attachments

Recap

Versioned Object Store, Op-
timistic Locking, REST API,
MapReduce Views

Replication & Crash
Resistance

Awesome!Awesome!

Revisions, Attachments

A Little History

Damien Katz self funded
fulltime development for 2
years

Now backed by IBM

A Little History

Top Level Apache Project

Apache 2.0 License

A Little History

5th year of development

Prototype in C++

0.8.1: 6666 Lines of Code

Resources
Twitter: @CouchDB & http://couchdb.org/

Dress like a Couch:
http://shop.couchdb.com

http://damienkatz.net/ & http://jan.prima.de/

http://blog.racklabs.com/?p=74

https://peepcode.com/products/couchdb-
with-rails

not covered everything,
other talks + tutorials

http://couchdb.org
http://couchdb.org
http://shop.couchdb.com
http://shop.couchdb.com
http://damienkatz.net
http://damienkatz.net
http://jan.prima.de
http://jan.prima.de
http://blog.racklabs.com/?p=74
http://blog.racklabs.com/?p=74

Commercial Break

The Book

O'Reilly

http://books.couchdb.org/relax

Apache 2.0 Licensed

Summer 2009

http://books.couchdb.org/relax
http://books.couchdb.org/relax

The Book —Can’t wait?

Help CouchDB

Hire me for Consulting,
Training & Development

jan@apache.org

mailto:jan@apache.org
mailto:jan@apache.org

Thank You
Really, thanks.

Got it?
Questions

Bonus Slides

Where is my auto increment

What is auto_increment?

Unique identifier

Sequence denominator

Where is my auto_increment?

Documents have `_id`s

Sequences in distributed
applications are not

Timestamps get you a long
way, though.

Relation(ship)s

JOINs please!

What for?

Get data that “belongs
together”

Relation(ship)s

One big fat doc?

Pros: Easy – Cons: Bad with
concurrent updates

Use for: Low volume updates
e.g. user-supplied tags

Relation(ship)s

Master Doc – Slave Doc

Pros: A little complex – Cons:
Fast, good with concurrent
updates, tree operations

Use for: Everything else

Relation(ship)s

function(doc) {
 if(doc.ismaster) {
 emit([doc._id, doc.date], doc);
 } else {
 emit([doc.master_id, doc.date], doc);
 }
}

Relation(ship)s

... ...

["BAAC67", "2008-09-21"] {"is_parent",true}

["BAAC67", "2008-09-22"] {"...","..."}

["BAAC67", "2008-09-23"] {"...","..."}

["BAAC67", "2008-09-24"] {"...","..."}

... ...

Transactions!

Run multiple operations at
once

They all succeed or none gets
applied

Transactions

{
 "docs": [
 {"_id": "0", "int": 0, "str": "0"},
 {"_id": "1", "int": 1, "str": "1"},
 {"_id": "2", "int": 2, "str": "2"}
]
}

POST

Transactions!

Caveats:

Statement transaction

No data transaction

No multi-node transactions

Multi-Node Transactions!
Why? – Data redundancy

Use an HTTP proxy

Nice to build on standard
protocols

Caveat: 2-phase-commit in
disguise

MapReduce

View Examples – Docs by Date

Key Value

[2007, 10, 12, 20, 13, 12] 3465

[2007, 12, 26, 8, 37, 55] 4200

[2008, 2, 3, 10, 22, 34] 3782

[2008, 5, 1, 14, 16, 11] 5984

Map

View Examples – Docs by Date

Key Value

null 17431

Reduce

View Examples – Docs by Date

Key Value

[2007] 7665

[2008] 9766

Reduce with group_level=1

View Examples – Docs by Date

Key Value

[2007, 10, 12, 20, 13, 12] 3465

[2007, 12, 26, 8, 37, 55] 4200

[2008, 2, 3, 10, 22, 34] 3782

[2008, 5, 1, 14, 16, 11] 5984

Map

Views - Map Tags

Keys Values

family 1

friends 1

friends 1

work 1

work 1

youtube 1

… …

Views - Reduce Tag Count

Keys Values

family 1

friends 1

friends 1

work 1

work 1

youtube 1

… …

Keys Values

family 1

friends 2

work 2

youtube 1

… …

Views - Map Tags

function (doc) {
 for(var i in doc.tags)
 emit(doc.tags[i], 1);
}

Views - Reduce Tag Count

Keys Values

family 1

friends 1

friends 1

work 1

work 1

youtube 1

… …

Keys Values

family 1

friends 2

work 2

youtube 1

… …

Views - Reduce Tag Count

function (Key, Values) {
 var sum = 0;
 for(var i in Values)
 sum += Values[i];
 return sum;
}

Incremental, On-demand
reduce optional

Hot backup?

POSIX compliant

Hot backup?

$ cp -r /var/lib/couchdb/* \
 /mnt/backup

Number Bragging

Silly read-only benchmark with
memory saturation

2,500 req/s sustained on a
2Ghz dual core Athlon

Number Bragging

Silly read-only benchmark with
memory saturation

2,500 req/s sustained on a
2Ghz dual core Athlon

Using 9.8 MB RAM

Resources
Twitter: @CouchDB & http://couchdb.org/

Dress like a Couch:
http://shop.couchdb.com

http://damienkatz.net/ & http://jan.prima.de/

http://blog.racklabs.com/?p=74

https://peepcode.com/products/couchdb-
with-rails

not covered everything,
other talks + tutorials

http://couchdb.org
http://couchdb.org
http://shop.couchdb.com
http://shop.couchdb.com
http://damienkatz.net
http://damienkatz.net
http://jan.prima.de
http://jan.prima.de
http://blog.racklabs.com/?p=74
http://blog.racklabs.com/?p=74

