s T B

-

B it S B B

Jay Fields
DRW Trading

2

s already |

-~

ere DSL

wh

-

-

r

ea

4
)
a

O creat

when t

why DSLs-are important -

Is a DSL

Domain Specific Language

a computer programming language of
limited expressiveness focused on a
particular domain.

Martin Fowler

computer programming language

a DSL is used to instruct a computer to do
something, as well as helping
communication between humans.

buy 50 GEZO if Px is < 9805; hedge w/put

buy 50 GEZO if Px is < 9805; hedge w/put

iIf (Px.0of(GEZO) < 9805)
buy(50).0f(GEZ0).andHedgeWithPut();

buy(50.GEZ0).and_hedge_with_put if
GEZO.px < 9805

language nature

a DSL is a programming language, and as
such should have a sense of fluency where
the expressiveness comes not just from
individual expressions but also the way they
can be composed together.

for eurodollar future 2010 a March of.

Future future = new Future();
future.setMonth(March);
future.setYear(2010);
future.setlnstrument(‘eurodollar);

a eurodollar future for March of 2010.

a().eurodollar().future().forMarch().of(2010)

limited expressiveness

a DSL supports a bare minimum of features
needed to support its domain. You can't
build an entire software system in a DSL,
rather you use a DSL for one particular
aspect of a system.

regular expressions

-reading and writing to a file

-access to standard out

-public, protected, and private visibility
-int, double, float, big decimal

domain focus

a limited language is only useful if it has a
clear focus on a limited domain. The
domain focus is what makes a limited
language worthwhile.

Ruby (or Java, C#)

) 4

SQL Regex

dib access pattern match
_

| J J

Types of Domain Specific Languages

iInternal

context.checking(new Expectations()
one(clock).time();

will(returnValue(loadTime));
one(clock).time();

will(returnValue(fetchTime))

allowing(reloadPolicy).shouldRel
will(returnValue(false));

one(loader).load(KEY); will(retu
D;

context.checking(new Expectations()

Types of Domain Specific Languages

iInternal

context.checking(new Expectations()
one(clock).time();

will(returnValue(loadTime));
one(clock).time();

will(returnValue(fetchTime))

allowing(reloadPolicy).shouldRel
will(returnValue(false));

one(loader).load(KEY); will(retu
D;

context.checking(new Expectations()

written in host language

conventionally use of subset of host
language syntax

Types of Domain Specific Languages

iInternal

context.checking(new Expectations()
one(clock).time();

will(returnValue(loadTime));
one(clock).time();

will(returnValue(fetchTime))

allowing(reloadPolicy).shouldRel
will(returnValue(false));

one(loader).load(KEY); will(retu
1)

context.checking(new Expectations()

written in host language

conventionally use of subset of host
language syntax

external

elect

SUM(1mpressions) AS 1mpressions,
SUM(Cclicks) AS clicks,

ROUND(SUM(Ccost), Z2) AS cost,

IF (SUM(cost)= 0, 9.00, ROUNDC (SUM(cos
IF (SUM(impressions)= @, 0.00, ROUNDC (
IF ((current_status "Paused’ adgro
kKeyword_name, keyword_type, max(cost_cu
FROM aggr_keyword_stats

WHERE merchant "ThoughtWorks' and fro
GROUP BY played_keyword_id HAVING impre
order by clicks desc, concat(keyword_na
Limit 100;

select 1d, played_keyword_id, cost, con

Types of Domain Specific Languages

iInternal

context.checking(new Expectations()
one(clock).time();

will(returnValue(loadTime));
one(clock).time();

will(returnValue(fetchTime))

allowing(reloadPolicy).shouldRel
will(returnValue(false));

one(loader).load(KEY); will(retu
1)

context.checking(new Expectations()

written in host language

conventionally use of subset of host
language syntax

external

elect

SUM(1mpressions) AS 1mpressions,
SUM(Cclicks) AS clicks,

ROUND(SUM(Ccost), Z2) AS cost,

IF (SUM(cost)= 0, 9.00, ROUNDC (SUM(cos
IF (SUM(impressions)= @, 0.00, ROUNDC (
IF ((current_status "Paused’ adgro
kKeyword_name, keyword_type, max(cost_cu
FROM aggr_keyword_stats

WHERE merchant "ThoughtWorks' and fro
GROUP BY played_keyword_id HAVING impre
order by clicks desc, concat(keyword_na
Limit 100;

select 1d, played_keyword_id, cost, con

separate to host language

needs a compiler/interpreter to
execute.

Types of Domain Specific Languages

Interpreted

Interpret input directly or
compile to intermediate
representation and execute
that.

Account.find(:first,
.conditions =>
{:first_name => ‘jay’})

Domain Specific Language Output

Interpreted

Interpret input directly or
compile to intermediate
representation and execute
that.

Account.find(:first,
.conditions =>
{:first_name => ‘jay’})

Compiled
Usually code generation
Complicates Build

struct Table {
1: 132 length
2: 132 width
]

Domain Specific Language Output

gray area everywhere

XML Configuration File
Java : External DSL
ActionScript : Internal DSL

gray area

Domain Specific Language / Framework API

gray area

gray area everywhere

gray area everywhere

<beans>

<bean id="myDataSource"
class="org.apache.commons.BasicDataSource"
p:url="jdbc:mysql://localhost:3306/mydb"
p:username="someone" />

gray area

task :default => [:test]

task :test do
ruby "test/unittest.rb”
end

gray area

gray area everywhere

T i iy | £t L LV
E By o - >
= S = m mmatll g
L e o e it s £ 17,)
e e 2./
e . A B— OO R
Lt W
] 2P
il .

W28

{
f

1

A

\

¥

. -
e,
Tl
QO
. -
©
N
4
/)
-

'8
»

You

Domain Specific Languages should make
your job easier. DSLs should fill certain
specific needs, relieving you from solving
those problems.

You

Domain Specific Languages should make
your job easier. DSLs should fill certain
specific needs, relieving you from solving
those problems.

sql, regular expressions, spring config, ling

Stakeholders (but, you again)

A DSL designed to express the rules of
your business can help you review your
code with a domain expert. This should
lead to less bugs in your domain model.

Stakeholders (but, you again)

buy(50.GEZ0).and_hedge_with_put if
GEZO.px < 9805

Stakeholders (truly this time)

You can design a DSL that the domain
experts can use to define the domain rules
of the application

Stakeholders (truly this time)

buy 50 GEZO if Px is < 9805; hedge w/put

Programmer
Read / Write

- JMock
- Mockito
- Active Record

internal & external

Domain Specific Language Target

Programmer Domain Expert
Read / Write Readable

- JMock - RSpec
- Mockito - Your Domain
- Active Record Model

internal & external internal & external

Domain Specific Language Target

Programmer
Read / Write

- JMock
- Mockito
- Active Record

internal & external

Domain Expert
Readable

- RSpec
- Your Domain
Model

internal & external

Domain Expert
Read / Write

- JBehave
- RSpec Scenarios

generally external

Domain Specific Language Target

Programmer Read / Write

Programmer Read / Write

terse

Programmer Read / Write

as readable as possible

Programmer Read / Write

no custom error handling

Programmer Read / Write

exploit IDE features

Programmer Read / Write

apply programming best practices

Programmer Read / Write

language “noise” acceptable

Programmer Read / Write

design from the consumer perspective

' Jones rrondt1on
! UL I UL LU

List mockedList = mock(List.class);

R—
= (-]—

mockedgist.add(;one");
mockedList.clear();

verify(mockedList).add("one");
verify(mockedList).clear();

Domain Expert Readable

Domain Expert Readable

verbose

Domain Expert Readable

as readable as possible

Domain Expert Readable

use common domain idioms

Domain Expert Readable

no custom error handling

Domain Expert Readable

exploit IDE features

Domain Expert Readable

apply programming best practices

Domain Expert Readable

language “noise” should be hushed

Domain Expert Readable

collaborate on design

describe Account do

it "should have status silver when it has greater than 24 points" do
account = Account.new
account,credit(25.points)
account,status.should == 'Silver'

end

it "should have status gold when it has greater than 49 points" do
account = Account.new
account,credit(50.points)
account,status.should == 'Gold'

end

it "should have status platinum when it has greater than 74 points" do
account = Account.new
account,credit(75.points)
account,status.should == 'Platinum’

end

end

Domain Expert Read / Write

Domain Expert Read / Write

verbose

Domain Expert Read / Write

as readable as possible

Domain Expert Read / Write

use common domain idioms

Domain Expert Read / Write

custom error handling

Domain Expert Read / Write

design your own editor

Domain Expert Read / Write

ignore programming best practices

Domain Expert Read / Write

language “noise” should not exist

Domain Expert Read / Write

domain expert designs the language

Given I am not logged in
When I log in as Liz with a password JBehaver
Then I should see a message, "Welcome, Liz!"

Given I am logged in
When I logout
Then I should see a message, "Thank you, you are now logged out”

JBehave

you use several right now

ActiveRecord Validations JMock
Spring Config Thrift Prototype Effects

A HTML
nt JBehave SQL
NUnNIt

LINQ Regular Expressions
. | CSS
Rhino Mocks Mockito
Rake

RSpec Scenairos WUNt YAML

YUl widgets
db deploy

RSpec ~ JQuery

you use several

ActiveRecord Validations JMock
Spring Config Thrift Prototype Effects

A HTML
nt JBehave SQL
NUnNIt

LINQ Regular Expressions
. | CSS
Rhino Mocks Mockito
Rake

RSpec Scenairos WUNt YAML

YUl widgets
db deploy

RSpec ~ JQuery

you use several

ActiveRecord Validations

LINQ Regular Expressions

Rhino Mocks Mockito
Junit

RSpec

you use several

NUnit

Rake

Spring Config Trift Prototype Effects

HTML
Ant JBehave SQL

CSS

YAML

YUI widgets
dibo deploy

RSpec Scenairos

JQuery

you use several

Spring Config Trift Prototype Effects

HTML
Ant JBehave SQL

CSS

YAML

YUI widgets
dibo deploy

RSpec Scenairos

JQuery

you use several

ActiveRecord Validations JMock
Spring Config Prototype Effects

A HTML
nt JBehave SQL
NUnNIt

LINQ Regular Expressions
. | CSS
Rhino Mocks Mockito
Rake

RSpec Scenairos WUNt YAML

YUl widgets
db deploy

RSpec ~ JQuery

you use several

you use several

~ tocreateaDSL

Programmer Read / Write

Programmer Read / Write

simplify repetitive tasks

Programmer Read / Write

framework for solving a specific problem

Programmer Read / Write

abstract problems to a higher level

Domain Expert Readable

Domain Expert Readable

designing the domain model

Domain Expert Readable

testing the domain model

Domain Expert Readable

application configuration

Domain Expert Read / Write

Domain Expert Read / Write

frequent rule changes

Domain Expert Read / Write

large amount of similar logic

Domain Expert Read / Write

time to market criticality

in a word: Productivity

Imagine your life without:

in a word: Productivity

Imagine your life without:
regular expressions

in a word: Productivity

Imagine your life without:

SQL

in a word: Productivity

Imagine your life without:

in a word: Productivity

Imagine your life without:

in a word: Productivity

Imagine your life without:

in a word: Productivity

Imagine your life without:

JUnit / RSpec / NUnit

in a word: Productivity

Imagine your life with:

in a word: Productivity

Imagine your life with:
Domain experts verifying behavior visually

in a word: Productivity

Imagine your life with:

Domain experts writing tests

in a word: Productivity

Imagine your life with:

Domain experts writing the business rules

in a word: Productivity

Imagine your life with:

Testing complex domain graphs easily

in a word: Productivity

Imagine your life with:

Seamless persistence

in a word: Productivity

Imagine your life with:

Seamless resource pub/sub

in a word: Productivity

Imagine your life with:

... being rid of any complicated issue ...

Questions

R

Programmer
Read / Write

Design your next
framework with
EXPressiveness as
a core requirement.

Your next steps depend on your target

Programmer Domain Expert
Read / Write Readable

Design your next Ask your domain expert

framework with to look though your

expressiveness as domain logic or the

a core requirement. domain logic tests and
come up with a syntax
your are both
comfortable using.

Your next steps depend on your target

Programmer
Read / Write

Design your next
framework with
EXPressiveness as
a core requirement.

Domain Expert
Readable

Ask your domain expert
to look though your
domain logic or the
domain logic tests and
come up with a syntax
your are both
comfortable using.

Domain Expert
Read / Write

|dentify the highly similar
domain logic that
changes regularly and
attempt to design a
language the domain
expert would be
comfortable using.

Your next steps depend on your target

Martin Fowler: DSL - Work in Progress
www.martinfowler.com/dslwip

Jay Fields: BNL - DSL for Domain Experts
bnl.jayfields.com

Google For: Language Workbenches, Intentional
Software, JetBrains MPS, Internal
DSL, External DSL

interesting information

http://www.martinfowler.com/dslwip
http://www.martinfowler.com/dslwip
http://www.martinfowler.com/dslwip
http://www.martinfowler.com/dslwip

Jay Fields
DRW Trading

