Strongly Typed
Domain Specific Embedded
Languages

Lennart Augustsson
Standard Chartered Bank
lennart@augustsson.net

22 November 2008 QCON

Overview

 Mostly Haskell
— Types, types, types
A sampling of DSELs I've made
— LLVM bindings
— Paradise, Excel generation
— Bluespec, hardware design

22 November 2008 QCON

Who am |?

e Languages over the years
— 1990-1995, hbc — the first Haskell compiler

—1995-1996, R@VE — a DSL for airline crew
scheduling

—1997-1998, Delf — a DSL for (Swedish) tax
calculation

— 2000-2005, Bluespec — a DSL for hardware
design

— 2006-2008, Paradise — a DSEL for pricing models
— 2008-, more DSELSs

22 November 2008 QCON 3

What Is a Domain Specific
Language?

A programming language tailored for a particular
application domain, which captures precisely the
semantics of the application domain -- no more, no less.

A DSL allows one to develop software for a particular
application domain quickly, and effectively, yielding
programs that are easy to understand, reason about,
and maintain.

Hudak

22 November 2008 QCON

The Cost Argument

SW methodology
cost
- DSL-based J
Start up methodology
cost <
i

Software life cycle
22 November 2008 QCON

The Problem with DSLS

*DSLs tend to grow: adding procedures, modules, data
structures...

sLanguage design is difficult and time-consuming; large
parts are not domain specific.

sImplementing a compiler is costly (code-generation,
optimisation, type-checking, error messages...)

[Start up costs may be substantial!}

22 November 2008 QCON

Domain Specific Embedded
Languages

In an existing host language?

{Why not embed the DSL as a Iibrary}

+

Inherit non-domain-specific
parts of the design.

Inherit compilers and tools.
*Uniform “look and feel”
across many DSLs

*DSLs integrated with full
programming language, and
with each other.

eConstrained by host language
(syntax, type system, etc).
*Error messages.

. TVYOUVCOTITOCOT = UUC0O

<Ok

The Cost Argument Again

Total t Conventional
SW methodology —"
" __—"DSL-based
Lmethodology
DSEL-based
Start up methodology
cost <
N

VVVVV 8

What makes a good host language?

 Light weight syntax
— Because we want to tailor the syntax
— Haskell, Lisp, Ruby, Python, Smalltalk, Scala, ...

 Easy to create suspensions
— Because we want to make control structures
— Haskell, Lisp, Ruby, Smalltalk, Scala, ...

 Powerful and malleable type system
— Haskell, Scala, ...

22 November 2008 QCON 9

Why strong typing?

Helps In designing software.
Eliminates a lot of testing.
More efficient.

Easier to refactor.

22 November 2008 QCON

10

DSEL

 There are two kinds of embeddings:

— Shallow embedding, the DSEL uses the values
and types of the host language.

— Deep embedding, the DSEL builds an abstract
syntax tree, using its own types.

22 November 2008 QCON

11

Shallow/deep embedding

* A language for drawing circles

twoCircles = do
circle (2,2) 4
circle (1.5,4) 2.5

 Draws two circles at the given coordinates
and with the given radius.

22 November 2008 QCON

12

Shallow embedding

 Running the program draws the circles

 Type of the circle function
circle :: (Double, Double) -> Double -> 10 ()

o Uses ordinary Haskell types

22 November 2008 QCON

13

Deep embedding

 Running the program generates an abstract

syntax tree:

Stmts [Circle (Dbl 2, Dbl 2) (Dbl 4),
Circle (Dbl 1.5, Dbl 4) (Dbl 2.5)]

 Type of the circle function

circle :: (Expr Double, Expr Double) ->
Expr Double -> Stmt ()

e Uses “embedded” types (GADTs or phantom

types)
* Allows further processing of the program.

22 November 2008 QCON 14

Shallow/deep embedding

Shallow embedding Is easier
Deep embedding allows more processing

Deep embedding is trickier to make strongly
typed.

The example program, twoCircles, has no
notion of what embedding it Is.

In fact, in can be both!
twoCircles :: (CircleMonad m) => m ()

22 November 2008 QCON 15

The Haskell type system

(not a Haskell tutorial)
e Base types
— Int, Int8, Intlo, ...
— Word, Word8, Word16, ...
— Integer
— Char
— Float, Double

e Function type
~S->T

22 November 2008 QCON

16

The Haskell type system

(not a Haskell tutorial)
e Data types

— Enumerations
» data Color = Red | Green | Blue

— Records

» data Coord =
Coord { x :: Double, y :: Double }

— Unions

« data Shape = Circle { radius :: Int }
| Rect { width,height :: Int }

22 November 2008 QCON

17

The Haskell type system

(not a Haskell tutorial)
e Data types
— Recursive types
 data ListOfInt = Nil | Cons Int ListOfint

— Parameterized types

« data BinTree a = Empty

| Node { left, right :: BinTree a,
value :: a '}

— List

* [a]
— Tuples

* (a,b), (a,b,c), (a,b,c,d), ...

22 November 2008 QCON

18

The Haskell type system

(not a Haskell tutorial)
e Type variables

— Used to express parametric polymorphism
— swap :: (a, b) -> (b, a)
swap (X, y) = (Y, X)
—id::a->a
Id X = X
— length :: [a] -> Int
— map :: (a->b) ->[a] -> [b]

22 November 2008 QCON

19

The Haskell type system

(not a Haskell tutorial)
e Type classes

— What is the type of == ?

* Almost any two values of the same type can be
compared.

— What is the type of + ?
e Types like Int and Double can be added.

— Why not traditional overloading?
* Type inference, e.g., refl x = x ==X

o Haskell type classes are collections of types
—l.e., more like OO interfaces than classes.

22 November 2008 QCON 20

The Haskell type system

(not a Haskell tutorial)
e == again
— (==) ::a->a->Bool
« WRONG! All values cannot be compared.
— (==) :: (Eq a) ==a -> a -> Bool

A context.
Constrains a.

22 November 2008 QCON

21

The Haskell type system

(not a Haskell tutorial)
e Declaring Eq

class Eqa where
(==) :: a->a->Bool

Instance EqInt where
(==) = primintEqual

Instance Eq Double where
(==) = primDoubleEqual

22 November 2008 QCON

22

The Haskell type system

(not a Haskell tutorial)
 More EQ

instance (Egqa, Eqb)=>Eq(a, b) where
(X,y)==(z,w) = Xx==2 && y==w

iInstance (Eq a) => Eq [a] where
b ==0 = True
(X:xs) == (Yy:ys) = X==y && XS==YyS
== = False

22 November 2008 QCON

23

The Haskell type system

(not a Haskell tutorial)
 What about + ?

Whoal!

class Num a where Overloaded on the
return type.

(+) ra->a->a p
(-)ra->a->a
(*) - a ->a ->a

frominteger :: Integer -> a

iInstance Num Double where
(+) = primDoubleAdd
(-) = primDoubleSub
(*) = primDoubleMul
fromlnteger = primDoubleFrominteger

22 November 2008 QCON 24

The Haskell type system

(not a Haskell tutorial)
 \What about numeric literals?

— Writing, e.g., 42 in Haskell really means
(fromlnteger 42)

— Allows each type to treat literals the way it likes.
— Arbitrary precision for the literal.

— Great for DSEL! Can use numeric literals for new
numeric types.

—iInc:: (Numa)=>a->a
INncx=x+1

22 November 2008 QCON 25

A small example

-- Solving a quadratic equation,

- lLe.a*x"2+b*x+c=0

solve (a, b, c) = ((-b+a)/(2*r), (-b-r)/(2*a))
where r =sqgrt(b"2 — 4*a*c)

solve :: (Floating a) => (a, a, a) -> (a, a)

22 November 2008 QCON

26

Case Study, LLVM

LLVM (Low Level Virtual Machine) Is an
assembly language (in SSA form).

Programming language bindings allow code to
0e generated by a batch compiler or a JIT.

_LVM API is a large set of procedures to
create Instructions, basic blocks, etc.

Bindings exist for, e.g., C++, O'Caml, Haskell

22 November 2008 QCON 27

Case Study, LLVM

e Text file syntax:

define 132 @mul_add(i32 %x, 132 %y, 132 %z) {
entry:

%tmp = mul 132 %x, %y

%tmp2 = add 132 %tmp, %z

ret 132 %tmp2

}

[* Corresponding C code */
Int mul_add(int x, inty, int z) {
return Xx *y + z;

}

22 November 2008 QCON

28

Case Study, LLVM

In C++:

Constant* ¢ = mod->getOrinsertFunction("mul_add",
[*ret type*/ IntegerType:.get(32),
[*args*/ IntegerType:.get(32),

IntegerType::.get(32),
IntegerType::.get(32),
NULL);

Function* mul_add = cast<Function>(c);

Function::arg_iterator args = mul_add - >arg_begin();

Value* x = args++;

Value*y = args++;

Value* z = args++;

BasicBlock* block = BasicBlock::Create("entry", mul_add);

IRBuilder builder(block);

Value* tmp = builder.CreateBinOp(Instruction::Mul :
X’ y, Iltmpll);
Value* tmp2 = builder.CreateBinOp(Instruction::Add :
tmp, z, "tmp2");

builder. CreateRet (tmp2);

22 November 2008 QCON 29

Case Study, LLVM

e |n Haskell:

mul_add :: CodeGen (Int32 -> Int32 -> Int32 ->
1O Int32)
mul_add = createFunction $\ xy z ->
createBasicBlock
tmp <- mul xy
tmp2 <- add tmpz
ret tmp2

22 November 2008 QCON

do

30

Case Study, LLVM

e S0 what about types?

 LLVM has a rich type system
—integer: 11, ..., 18, ..., 116, ... 132, ...
— floating: float, double, ...

— first class: integer, floating, pointer, array, ...

— primitive: label, void, floating

— derived: integer, array, function, pointer, ...

— array. [<# elements> x <elementtype>]
— function: <returntype>(<parameter list>)

22 November 2008 QCON

31

Case Study, LLVM

e Samples instructions:
— retvoid

ret <type> <value>

o <type> must be first class
— <result> = add <ty> <opl>, <op2>

o Arguments must be integer, floating, or vector
— <result> = xor <ty> <opl>, <op2>

« Arguments must be integer or vector
—<result>=call <ty> <fnptrval>(<args>)

« Args must be first class, function must match args

22 November 2008 QCON

32

Case Study, LLVM

 The C++ code enforces very few of the type
restrictions.

e \What happens if we make a type error?

— Caught by a runtime sanity check, exception
thrown.

— Uncaught, segmentation fault or just a wrong
answer.

22 November 2008 QCON

33

Case Study, LLVM
 Introduce type classes for LLVM types

class IsTypea where

typeRef :: a -> TypeRef
class (IsType a) => IsArithmetic a
class (IsArithmetic a) => IsInteger a
class (IsArithmetic a) => IsFloating a
class (IsType a) => IsPrimitive a
class (IsType a) => IsFirstClass a
class (IsType a) => IsFunction a

22 November 2008 QCON

Case Study, LLVM

* Put corresponding Haskell types in classes

instance IsType Double
instance IsType ()
instance IsType Bool
instance IsType Int8
instance IsType Intl6
instance IsType Int32

where
where
where
where
where
where

typeRef = doubleType
typeRef = voidType
typeRef = intlType
typeRef = int8Type
typeRef = intl6Type
typeRef = int32Type

instance (IsType a) => IsType (Ptr a) where
typeRef ~(Ptr a) = pointerType (typeRef a)

Instance (IsFirstClass a, IsFunction b) =>

IsType (a->b)

22 November 2008

where

QCON

Case Study, LLVM

* Put corresponding Haskell types in classes

Instance IsArithmetic Double
Instance IsArithmetic Int32

instance IsFloating Double

instance IsInteger Int32

 And a few more pages of this

22 November 2008 QCON

Case Study, LLVM

 Instructions functions simply call the (type
unsafe) LLVM functions via FFlI.

e Some Instruction types

add :: (IsArithmetic a) =>a ->a -> CodeGenr a

xor :: (Islntegera) =>a ->a ->CodeGenra
ret :: (IsFirstClass a) =>r -> CodeGenrr ()

call :: (CallArgs fg) => Functionf->g

22 November 2008 QCON

37

Case Study, LLVM

e Conclusions

— Haskell makes it possible to make a strongly
typed interface to external libraries.

— Complex types and relationships can be encoded
with type classes.

22 November 2008 QCON 38

Case Study, Excel

 Paradise, a DSEL for generating Excel
o Why?
— Excel Is terrible for software reuse.
— Copy & paste only “abstraction” mechanism

— But Excel is a familiar Ul; people like it
— So don’t write Excel, generate it

e Actually two DSELs
— Computation
— Layout

22 November 2008 QCON

39

Case Study, Excel

 Example: two Inputs, output the sum
o Computation

example= do
X< - input?2
y <- Input 3

Z <- output (x+y)

e Layout

return (row [view X, view y, view z])

22 November 2008 QCON

40

Case Study, Excel

* Running this Haskell code generates an Excel
sheet

C1 - B =A1+81
A B C D
1 2 3 5|

[x <-Input2 || y<-input3 } [Z <- output (x+y) J

22 November 2008 QCON 41

Case Study, Excel

* Excel is dynamically typed, few types:
— double, string, bool (+ errors)

— Many serious Excel users have additional types
representing objects (via Excel addins), but encoded as,
e.g., strings.

22 November 2008 QCON 42

Case study, Excel

 Deep embedding
— Need AST

— Running the DSEL code generates a
spreadsheet.

e We need an AST for Excel

22 November 2008 QCON

43

Case study, Excel

* Type of Excel expressions

data EXxp =
LitDbl Double

LitStr String
LitBol Bool
Apply Func [Exp]
Var Id

type Func = String
type Id = String

e But this is not type safe!
— E.g., Apply “not” [LitDbl 1.2]

22 November 2008 QCON

44

Case study, Excel

e Trick, use “phantom types”.

e |.e., create a well typed wrapper, and only
expose this to the user.

data Ea=EExp

mention on the right

Type variable not
It's a phantom.

22 November 2008 QCON

45

Case study, Excel

e Make a numeric instance.

Instance Num (E Double) where
Ex+Ey=E (Apply “+" [X, y])
Ex— Ey=E (Apply *-" [X, y])
Ex*Ey=E(Apply ™" [X, y]) |
frominteger i = E (LitDbl (frominteger 1))
e SO now
1+2*3:: E Double
1S
E (Apply “+” [LitDbl 1.0,
Apply “*” [LitDbl 2.0,
LitDbl 3.0]])

22 November 2008 QCON

Case study, Excel

* Types for input and output

class Cella where

Instance
Instance
Instance

Monad to handle

|

Cell Double where cell identity
Cell String where
Cell Bool where

input :: (Cella) =>E a->Gen (E a)
output :: (Cella) =>E a->Gen (E a)

Instance
Instance

(Cell a,Cell b) => Cell (a,b)
(Cell a,Cell b,Cell ¢) => Cell (a,b,c)

22 November 2008 QCON

a7

Case study, Excel
A little reuse, solving quadratics in Excel

solve = do
abc <- input (1, O, 0)
rs <- output (solve abc)
return (column [view abc, view rs])
1 - B B
A B C [

1 1 5 g|
2 2 3

* Note, the same code (even compiled!) for
solve will work in the Excel code.

22 November 2008 QCON

48

Case study, Excel

e Conclusions

— Type classes are useful to encode various
restrictions.

— An unityped deep embedding can be made type
safe with phantom types.

22 November 2008 QCON 49

Case study, Bluespec

Bluespec Is a hardware design language
— www.bluespec.com

Bluespec is a DSL

The main features of Bluespec can be done
as a DSEL in Haskell

— In fact Atom is a DSEL similar to Bluespec

In hardware bits are important

— Need to know the number of bits a value needs
when stored.

22 November 2008 QCON

50

Case study, Bluespec

e A snippet of code

Defines two registers to hold values.
Defines a rule that produces some combinational

ogic that executes when applicable.

stupidAdder = do

X <- mkReg (42 :: Int8)
y <- mkReg (12 :: Int8)
rule (x>0) $ do

X<==x-1
y<==y+1

22 November 2008 QCON 51

Case study, Bluespec

 \What can we store In a register?
Anything that can be turned into a fixed
number of bits.

 Here is how we can express this with Haskell
types:

class Bitsa where
type Size a
toBits :: a-> Bit (Size a)
fromBits :: Bit (Size a) -> a

22 November 2008 QCON 52

Case study, Bluespec

* \We need to express sizes In types, as to
make bit width statically typed.

e Haskell does not have a notion of numbers on
the type level, we have to build it.

* For simplicity, we use unary encoding of
numbers.

data Zero
data Succn

type One = Succ Zero
type Two = Succ One

22 November 2008 QCON 53

Case study, Bluespec

 \We want be able to convert from the type
level to the value level.

class Nata where
toValue :: a -> Int

Instance Nat Zero where
toValue =

iInstance (Nat n) => Nat (Succ n) where
toValue =1 + toValue (undefined :: n)

-- typical use
... toValue (undefined :: T) ...

22 November 2008 QCON

54

Case study, Bluespec

* Type level addition.
— Yes, the syntax Is weird.

type family
type instance
type instance

22 November 2008

Add mn
Add Zeron =n
Add (Succ m) n = Succ (Add m n)

QCON

55

Case study, Bluespec
* Primitive type of bit vectors

data Bit

append :: Bit m -> Bit n -> Bit (Add m n)
split :: Bit (Add m n) - > (Bit m, Bit n)

toint :: Bit n -> Integer
fromint :: Integer -> Bit n

22 November 2008 QCON

56

Case study, Bluespec

e Some Instances

class Bitsa where
type Size a
toBits :: a-> Bit (Size a)
fromBits :: Bit (Size a)

Instance Bits Bool where

type Size Bool = One
toBits x = fromint (
fromBits b = tolnt b ==

22 November 2008

If

QCON

->a

b then 1 else 0)

57

Case study, Bluespec

e Some Instances, cont

Instance (Bits a, Bits b) => Bits (a, b)
type Size (a, b) = Add (Size a) (Size b)
toBits (X, y) = append (toBits x) (toBits y)

fromBits b = (fromBits bx, fromBits by)
where (bx, by) = split b

22 November 2008 QCON

where

58

Case study, Bluespec

e Conclusions

— Complicated concepts like numbers and addition
can be encoded at the type level.

22 November 2008 QCON 59

Conclusions

« DSELSs are great.
o Strongly typed DSELSs are even greater.

 Haskell types can encode very complex type
systems.

22 November 2008 QCON 60

22 November 2008

Questions?

QCON

61

