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Computer Science and Art

• Combinations of Computer Science and some aspect of 
the Arts has become common at many universities.

• Majors of study are now common in:
– Video games
– Computational arts– Computational arts
– Digital media / multimedia
– Graphic art
– Computer music
– Computer aided design

• In addition, every major art department uses computers 
in some way for education, creation, and research.



The Picture at Yale

• New initiative:  “Yale C2”
Creative Consilience of Computing and the Arts

• Undergraduate:
– BS major in Computing and the Arts
– Specialized tracks in Art, Art History, Music, Theater Studies, 

and (coming soon) Architecture and Film Studiesand (coming soon) Architecture and Film Studies

• Graduate:
– MS Degree in Computing and the Arts
– PhD Degree in CS with focus on Computing and the Arts

• New laboratories are also planned

My goal:
Figuring out how PL research can enhance all this.



Caveats

• I will raise more questions than I will answer!
– Examples of work I and others have done.
– But with a focus on what could be, rather than what is.

• The talk is Haskell- and FP-centric.• The talk is Haskell- and FP-centric.
– Feel free to substitute “your favorite language” or

“programming paradigm” for “Haskell” or “FP”, respectively, 
everywhere in this talk.



How Haskell/FP Could Help Artists

• There is a limitless number of difficult computational 
problems inspired by the arts:
– Graphics and animation
– Modeling and rendering
– Image processing– Image processing
– Audio processing
– Tools, tools, tools

• The argument for using Haskell/FP in this context is not 
much different from most other contexts…

• We need the best languages, tools, programming 
environments, and so on.



The Sky is the Limit

• Can we create a robotic conductor?
• What does a saxophone the size of a house sound like?
• Can we animate a new choreography?
• Can we create new forms of artistic expression?

[see SMule’s Ocarina on YouTube!][see SMule’s Ocarina on YouTube!]
• How realistic can a virtual world become?
• Can a computer create an artistic artifact on its own?

– Or at least “elevator music” or stock graphics design?



Animusic

• [see video of Pipe Dream on YouTube]
• An example of an application that seems to be begging 

for FP ideas.
• Combines sophisticated notions of:

– Physical modeling– Physical modeling
– Graphics and animation
– Art
– Music and audio

• Fits in well with Fran, Haskore, Dance, and related ideas 
(described shortly).



Can we change the way artists think?

• Three ways that FP can help artists:
– Abstraction
– Abstraction
– Abstraction

• Examples from the Haskell world:
– The usual:  higher-order functions, lazy evaluation, and so on.
– The unusual:  monads, arrows, applicative functors, and other 

computational abstractions.

• “Monads for Artists”?   (yeah right)



Should we change the way artists think?

• Perhaps we don’t want to change the way artists think!

• Examples:
– Saying “what” instead of “how”. (declarative)
– Not worrying about resources. (lazy evaluation)
– No boundaries. (first-class values)
– Abstracting away detail. (abstraction mechanisms)

• Or perhaps we need to do both:
– Provide familiar concepts, devoid of irrelevant details.
– Expose “meta-level” ideas (abstraction techniques!) to allow 

stretching the imagination.



Target Audience

• Some artists hate computers.
• Others use them but never look under the hood.
• And some are truly curious, want to know more,

are willing to program, explore computer’s potential.

attitude

• Some people are left brained.
• Others are right brained.
• And some are both – skilled in logic and intuition.

We should focus on
“curious, ambidextrous-brained people.”

skill



Haskell and the Arts

• Video games (Frag, Super Nario, …)
• Music (Haskore, HasSound, …)
• Conal Elliott’s work on:

– Fran
– Pan and Pajama– Pan and Pajama
– Eros and TV
– Vertigo
[see conal.net]

Not a lot…



Fran, FRP, and Yampa

• FRP = Functional Reactive Programming
• Invented by Conal Elliott
• Became key area of research at Yale:

– Foundations– Foundations
– Implementations
– Applications:

• Robotics (both humanoid and mobile)
• Parallel programming
• Audio processing / sound synthesis
• Graphical User Interfaces



Behaviors in FRP
• Continuous behaviors capture any time-varying 

quantity, whether:
– input (sonar, temperature, video, etc.),
– output (actuator voltage, velocity vector, etc.), or
– intermediate values internal to a program.– intermediate values internal to a program.

• Operations on behaviors include:
– Generic operations such as arithmetic, integration, 

differentiation, and time-transformation.
– Domain-specific operations such as edge-detection 

and filtering for vision, scaling and rotation for 
animation and graphics, etc.



Events in FRP

• Discrete event streams include user input as well as 
domain-specific sensors, asynchronous messages, 
interrupts, etc.

• They also include tests for dynamic constraints on • They also include tests for dynamic constraints on 
behaviors (temperature too high, level too low, etc.)

• Operations on event streams include:
– Mapping, filtering, reduction, etc.
– Reactive behavior modification (next slide).



An Example from Graphics 
(Fran)

A single animation example that demonstrates 
key aspects of FRP:

growFlower =  stretch size flowergrowFlower =  stretch size flower
where  size = 1 + integral bSign

bSign =
0 `until`

(lbp ==> -1 `until` lbr ==> bSign) .|.
(rbp ==>  1 `until` rbr ==> bSign)



Computer Music Apps 
Can Get Arbitrarily Complex

• We need the best languages, tools, 
programming environments, etc.

• (We also need the best algorithms, data 
structures, and so on.)

• Special-purpose computer-music languages • Special-purpose computer-music languages 
have “issues”:
– often too special-purpose
– sometimes marginal implementations
– usually not designed by PL experts
– huge overhead costs to implement and maintain



Haskore and HasSound

• Domain-specific embedded languages for music 
and sound synthesis, respectively.

• Being “reborn” in the context of the Computing 
and the Arts initiative at Yale.and the Arts initiative at Yale.

• Being used in two-course sequence in 
Fundamentals of Computer Music:
– Algorithmic and Heuristic Composition
– Sound Representation and Synthesis



Functional Music Makes Sense

• Purely functional languages are especially 
suited to computer music.

• Declarative: saying "What" instead of "How“.
• Haskell's abstraction mechanisms allow musical 

programs that are elegant, concise, powerful:programs that are elegant, concise, powerful:
– higher-order functions
– algebraic data types
– lazy evaluation
– type classes

• Aesthetics matter.



Technology Has Improved

• Computers are much faster!!
• Implementations are much better!!

– run faster
– generate faster code
– more user friendly
– better programming environments

• Libraries are much more plentiful!!
• In particular, the GHC compiler, interpreter, and libraries 

are now “industrial strength.”

“A large enough quantitative difference
makes a qualitative difference.”



Design Goals for Haskore II

• The obvious: 
simplicity, expressiveness, generality, performance.

• Vertical design:
– Good for signal processing / sound synthesis.
– Good for algorithmic composition.– Good for algorithmic composition.
– Good for reactive/interactive applications.

• Musical User Interface (MUI).
• Real-time sound synthesis.
• Seamless integration of the continuous and discrete.
• Transparency of design.



Glove

composed and rendered
in Haskore by

Tom Makucivich
(a musician!)

with a little help from yours truly



Haskore Basics

Simple representations of basic types:

type Octave = Int
type Dur = Rational
type Pitch = (PitchClass, Octave)
data PitchClass = Cff | Cf | C | Dff | Cs | Df | Css | D | Eff | Dsdata PitchClass = Cff | Cf | C | Dff | Cs | Df | Css | D | Eff | Ds

| Ef | Fff | Dss | E | Es | Ff | F | Gff | Ess | Fs | Gf | Fss | G 
| Aff | Gs | Af | Gss | A | Bff | As | Bf | Ass | B | Bs | Bss

data Prim a = Note Dur a | Rest Dur

For example:
Note (1/4) (C,4)  ::  Prim Pitch -- Middle C quarter note



The Music Type
data Music a = Primitive (Prim a) – primitive note or rest

| Music a :+: Music a -- sequential composition
| Music a :=: Music a -- parallel composition
| Modify Control (Music a) -- modifier

data Control =
Tempo Rational -- scale the tempo

| Transpose AbsPitch -- transposition| Transpose AbsPitch -- transposition
| Instrument InstrumentName -- instrument label
| Phrase [PhraseAttribute ] -- phrase attributes
| Player PlayerName -- “player” label

type AbsPitch = Int -- absolute pitch
type PlayerName = String -- player names
type InstrumentName = AcousticGrandPiano

| Vibraphone 
| Flute … -- from General Midi standard



For Convenience

• Constructor shorthands:
note d p = Primitive (Note d p)
rest d = Primitive (Rest d)
tempo r m = Modify (Tempo r) m
transpose i m = Modify (Transpose i) m
…

• Note and rest names:
c o d = note d (C, o)
cs o d = note d (Cs, o)
…
qn = 1/ 4;   qnr = rest qn
en = 1/ 8;   enr = rest en
…

• Example:  ii-V-I chord progression in C major:
let dMin = d 3 qn :=: f 3 qn :=: a 3 qn

gMaj = g 3 qn :=: b 3 qn :=: d 4 qn
cMaj = c 3 hn :=: e 3 hn :=: g 3 hn

in dMin :+: gMaj :+: cMaj



Higher-Order Functions

• How can any programmer (or artist!) do without them?  ☺
• Two key data abstractions (as for lists): map and fold.
• First map (functor):

mMap :: (a → b) → Music a → Music b

• Key property: mMap id = id

• For example:

type Volume = Int

addVolume :: Volume → Music Pitch → Music (Pitch,Volume)
addVolume v = mMap (λp → (p, v))

scaleVolume :: Rational → Music (Pitch,Volume) → Music (Pitch,Volume)
scaleVolume r = mMap (λ(p,v) → (p, round (r * v)))



Fold (catamorphism)

• More general than mMap.
mFold :: (b → b → b) → (b → b → b) → 

(Prim a → b) → (Control → b → b) → 
Music a → b

• Key property:

mFold (:+:) (:=:) Primitive Modify = idmFold (:+:) (:=:) Primitive Modify = id

• For example, to compute the duration of a Music value:
dur  :: Music a → Dur
dur  = mFold (+) max getDur modDur where

getDur (Note d  p) = d
getDur (Rest d) = d
modDur (Tempo r) d = d / r
modDur d = d



Super Retrograde

• Reverse (in time) an entire Music value.
• Requires a temporal semantics for (:=:)

• Recall:  flip f x y = f y x

revM :: Music a → Music arevM :: Music a → Music a
revM = mFold (flip (:+:)) (=:) Primitive Modify where

m1 =: m2 = let d1 = dur m1
d2 = dur m2

in if d1>d2 then m1 :=: (rest (d1-d2) :+: m2)
else (rest (d2-d1) :+: m1) :=: m2



Lazy Evaluation and Infinite Music

• It is perhaps not surprising that lazy evaluation is useful in many 
computer music apps.

• As a simple example:

repeatM :: Music a → Music a
repeatM m  =  m :+: repeatM m

• This motivates the need for a “truncating” parallel composition 
operator (:=/) such that dur (m1 :=/ m2) is equal to the minimum
of dur m1 and dur m2.  Thus if one music value is infinite, it gets 
truncated to the length of the other one.



Interpretation and Performance

• What does a Music value actually mean?

• An abstract performance is a sequence of musical events:

type Performance = [Event]
data Event = Event PTime InstrumentName 

AbsPitch DurT VolumeAbsPitch DurT Volume

• The event Event t i p d v captures the fact that at time t instrument i
sounds pitch p with volume v for a duration d.



From Music to Performance

• To convert a Music value into a Performance, we need a Context:
data Context a = Context

Time -- time that music begins
Player a -- default player
InstrumentName -- default instrument
DurT -- duration of one beat
Key -- key (absolute pitch)
Volume -- default volume

• The function perform does the desired interpretation:

perform ::  Context a → Music a → Performance



Musical Equivalence

• Some Music values are not equal as Haskell values, but are 
equivalent musically, such as:

(m1 :+: m2) :+: m3 and m1 :+: (m2 :+: m3)

(In other words, we expect (:+:) to be associative.)
• Definition: Two musical values m1 and m2 are equivalent,

∀

• Definition: Two musical values m1 and m2 are equivalent,
written m1 ≡ m2, if and only if:

(∀ c) perform c m1 = perform c m2

• In other words:
“if two things sound the same, they are the same”

• The above equivalence can then be stated as an axiom:
For all m1, m2, and m3:

(m1 :+: m2) :+: m3 ≡ m1 :+: (m2 :+: m3)



An Algebra of Music

• There are eight axioms that comprise an algebra of music.
• For example, (:=:) is not only associative, it is commutative.
• Another (important) example:

Duality of (:+:) and (:=:)
For any m0, m1, m2, and m3 such that dur m0 = dur m2:
(m0 :+: m1) :=: (m2 :+: m3) ≡ (m0 :=: m2) :+: (m1 :=: m3)(m0 :+: m1) :=: (m2 :+: m3) ≡ (m0 :=: m2) :+: (m1 :=: m3)

• Each axiom is provably sound.
• The axiom set is also complete: If two music values are equivalent, 

they can be proven so using only the eight axioms.
• Furthermore, the algebra can be made polymorphic: it is valid for 

video, audio, animation, even dance.
• The Eight Laws of Polymorphic Temporal Media.
• Allows designing languages having the same “look and feel” across 

a variety of base media types.



Available now at your neighborhood cafepress.com…



Haskore’s MUI
(Musical User Interface)

• Design philosophy:
– GUI’s are important!
– The dataflow metaphor (“wiring together components”) is powerful!
– Yet graphical programming is inefficient…

• Goal: an effective set of UI widgets that can be programmed using a 
dataflow metaphor at the linguistic level.dataflow metaphor at the linguistic level.

• We achieve this via two levels of abstraction:
– The UI Level

• Create widgets
• Attach titles, labels, etc.
• Control layout

– The Signal Level
• A signal is conceptually a continuous  (time-varying) value.
• Sliders, knobs, etc. provide are input widgets.
• Midi out, graphics, etc. are output widgets.



Signals
• Signals are time-varying quantities.
• Conceptually they can be thought of as functions of time:

Signal a =   Time → a

• For example, the output of a slider is a time-varying number.
• Key idea:  Lift all static functions to the signal level using a family of 

lifting functions:
lift0 :: a → Signal alift0 :: a → Signal a
lift1 :: (a → b) → (Signal a → Signal b)
lift2 :: (a → b → c) → (Signal a → Signal b → Signal c)
…

• Haskell’s type classes make this especially easy.
• Conceptually:  

s1 + s2 =     λt → s1 t + s2 t
sin s        =     λt → sin (s t)
… 

• One can also integrate signals.



Events

• Signals are not enough… some things happen discretely.
• Events can be realized as a kind of signal:

data Maybe a = Nothing | Just a
type EventS a = Signal (Maybe a)

• So events are actually event streams.
• Midi event streams simply have type:• Midi event streams simply have type:

EventS [MidiMessage]

where MidiMessage encodes standard Midi messages such as 
Note-On, Note-Off, etc.

• In addition:

midiIn :: Signal DeviceID → UI (EventS [MidiMessage])
midiOut :: Signal DeviceID → EventS [MidiMessage] → UI ()



MUI Examples
• Pitch translator:

do ap ← title "Absolute Pitch" (hiSlider 1 (0, 100) 0)
title "Pitch" (display (lift1 (show ◦ pitch) ap))

• Output Midi note when pitch changes:

do ap ← title "Absolute Pitch" (hiSlider 1 (0, 100) 0)
title "Pitch" (display (lift1 (show ◦ pitch) ap))title "Pitch" (display (lift1 (show ◦ pitch) ap))
let ns = unique ap =>> (λk → [ANote 0 k 100 0.1])
midiOut 0 ns

• Output Midi note at constant rate:

do …
t ← time
f ← title "Tempo" (hSlider (1, 10) 1)
let ticks = timer t (1/f )
let ns = snapshot ticks ap =>>(λk → [ANote 0 k 100 0.1])
midiOut 0 ns



HasSound

• HasSound is the piece of Haskore that focuses on 
signal/audio processing and sound synthesis.

• It uses a more sophisticated notion of signal, but is 
conceptually very similar.

• Supports multiple clock rates using phantom types and • Supports multiple clock rates using phantom types and 
type classes.

• The correspondence between the mathematics and the 
program is very strong:  even recursive signals work.

• We can generate real-time sound at 44.1 KHz for 
moderately-sized instruments.  This will get better 
through optimization.



Physical Model of a Flute
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Expressed in HasSound
flute :: Double -> AR -> Double -> CR -> AR -> AR
flute dur amp fqc press breath =

let kenv1    = lineSeg [0, 1.1, 1, 1, 0] [0.06, 0.2, dur-0.16, 0.02]  :: CR  
kenv2    = lineSeg [0, 1, 1, 0] [0.01, dur-0.02, 0.01] :: CR
kenvibr = lineSeg [0, 0, 1, 1] [0.5, 0.5, dur-1] :: CR
bore     = delayt (1/fqc)
emb      = delayt (1/fqc/2)
feedbk1 = 0.4feedbk1 = 0.4
feedbk2 = 0.4
env1     = upSample (kenv1 * press)
env2     = upSample kenv2
envibr   = upSample kenvibr
flow     = rand 1 env1
vibr     = sinA 5 * 0.1 * envibr
sum1     = breath * flow + env1 + vibr
flute    = bore out
x        = emb (sum1 + flute * feedbk1)
out      = lowpass 0.27 (x - x**3 + flute * feedbk2)

in out * amp * env2



Sample Results

• f0 and f1 demonstrate the change in the breath parameter.

f0 = flute 3 0.35 440 0.93 0.02
f1 = flute 3 0.35 440 0.93 0.05

• f2 has a weak pressure input so it only plays the blowing noise.

f2 = flute 3 0.35 440 0.53 0.04f2 = flute 3 0.35 440 0.53 0.04

• f3 takes in a gradually increasing pressure signal.

f3 = flute 4 0.35 440 (lineSeg [0.53, 0.93, 0.93] [2, 2]) 0.03

• Sequence of notes



Dance!
• Labanotation is a notation for recording any kind of 

human movement.
• Introduced by (Austrian-) Hungarian Rudolf von Laban 

(1879-1958) in 1928.  In the US development continued, 
most notably Ann Hutchinson Guest.

• Shapes represent Columns represent• Shapes represent Columns represent
movement: body parts:



Dance, cont’d

• Labanotation can be captured in an 
algebraic datatype not unlike 
Haskore.

• Was used to control humanoid 
robots in Liwen Huang’s PhD robots in Liwen Huang’s PhD 
thesis [Liwen2007].

• Can it instead be used to create 
languages and tools to help 
animators, dancers, actors, choreo-
graphers, and playwrites?



Conclusions

• “Computational Thinking” is finding its way into many 
disciplines, including the arts.

• Not just for traditional art – new modes are emerging, 
including interactive / dynamic art.including interactive / dynamic art.

• Providing our finest ideas, languages, and tools is a 
good way for Computer Science to have an impact.

• Haskell and functional programming in general are 
potentially a good match for this “new way of thinking.”



Thank You!!

(any questions?)


