
Haskell and the Arts
How Functional Programmers can
Help, Inspire, or even Be Artists

Paul Hudak
Yale University

Department of Computer Science

QCon San Francisco
November 2008

LUX ET VERITAS

Computer Science and Art

• Combinations of Computer Science and some aspect of
the Arts has become common at many universities.

• Majors of study are now common in:
– Video games
– Computational arts– Computational arts
– Digital media / multimedia
– Graphic art
– Computer music
– Computer aided design

• In addition, every major art department uses computers
in some way for education, creation, and research.

The Picture at Yale

• New initiative: “Yale C2”
Creative Consilience of Computing and the Arts

• Undergraduate:
– BS major in Computing and the Arts
– Specialized tracks in Art, Art History, Music, Theater Studies,

and (coming soon) Architecture and Film Studiesand (coming soon) Architecture and Film Studies

• Graduate:
– MS Degree in Computing and the Arts
– PhD Degree in CS with focus on Computing and the Arts

• New laboratories are also planned

My goal:
Figuring out how PL research can enhance all this.

Caveats

• I will raise more questions than I will answer!
– Examples of work I and others have done.
– But with a focus on what could be, rather than what is.

• The talk is Haskell- and FP-centric.• The talk is Haskell- and FP-centric.
– Feel free to substitute “your favorite language” or

“programming paradigm” for “Haskell” or “FP”, respectively,
everywhere in this talk.

How Haskell/FP Could Help Artists

• There is a limitless number of difficult computational
problems inspired by the arts:
– Graphics and animation
– Modeling and rendering
– Image processing– Image processing
– Audio processing
– Tools, tools, tools

• The argument for using Haskell/FP in this context is not
much different from most other contexts…

• We need the best languages, tools, programming
environments, and so on.

The Sky is the Limit

• Can we create a robotic conductor?
• What does a saxophone the size of a house sound like?
• Can we animate a new choreography?
• Can we create new forms of artistic expression?

[see SMule’s Ocarina on YouTube!][see SMule’s Ocarina on YouTube!]
• How realistic can a virtual world become?
• Can a computer create an artistic artifact on its own?

– Or at least “elevator music” or stock graphics design?

Animusic

• [see video of Pipe Dream on YouTube]
• An example of an application that seems to be begging

for FP ideas.
• Combines sophisticated notions of:

– Physical modeling– Physical modeling
– Graphics and animation
– Art
– Music and audio

• Fits in well with Fran, Haskore, Dance, and related ideas
(described shortly).

Can we change the way artists think?

• Three ways that FP can help artists:
– Abstraction
– Abstraction
– Abstraction

• Examples from the Haskell world:
– The usual: higher-order functions, lazy evaluation, and so on.
– The unusual: monads, arrows, applicative functors, and other

computational abstractions.

• “Monads for Artists”? (yeah right)

Should we change the way artists think?

• Perhaps we don’t want to change the way artists think!

• Examples:
– Saying “what” instead of “how”. (declarative)
– Not worrying about resources. (lazy evaluation)
– No boundaries. (first-class values)
– Abstracting away detail. (abstraction mechanisms)

• Or perhaps we need to do both:
– Provide familiar concepts, devoid of irrelevant details.
– Expose “meta-level” ideas (abstraction techniques!) to allow

stretching the imagination.

Target Audience

• Some artists hate computers.
• Others use them but never look under the hood.
• And some are truly curious, want to know more,

are willing to program, explore computer’s potential.

attitude

• Some people are left brained.
• Others are right brained.
• And some are both – skilled in logic and intuition.

We should focus on
“curious, ambidextrous-brained people.”

skill

Haskell and the Arts

• Video games (Frag, Super Nario, …)
• Music (Haskore, HasSound, …)
• Conal Elliott’s work on:

– Fran
– Pan and Pajama– Pan and Pajama
– Eros and TV
– Vertigo
[see conal.net]

Not a lot…

Fran, FRP, and Yampa

• FRP = Functional Reactive Programming
• Invented by Conal Elliott
• Became key area of research at Yale:

– Foundations– Foundations
– Implementations
– Applications:

• Robotics (both humanoid and mobile)
• Parallel programming
• Audio processing / sound synthesis
• Graphical User Interfaces

Behaviors in FRP
• Continuous behaviors capture any time-varying

quantity, whether:
– input (sonar, temperature, video, etc.),
– output (actuator voltage, velocity vector, etc.), or
– intermediate values internal to a program.– intermediate values internal to a program.

• Operations on behaviors include:
– Generic operations such as arithmetic, integration,

differentiation, and time-transformation.
– Domain-specific operations such as edge-detection

and filtering for vision, scaling and rotation for
animation and graphics, etc.

Events in FRP

• Discrete event streams include user input as well as
domain-specific sensors, asynchronous messages,
interrupts, etc.

• They also include tests for dynamic constraints on • They also include tests for dynamic constraints on
behaviors (temperature too high, level too low, etc.)

• Operations on event streams include:
– Mapping, filtering, reduction, etc.
– Reactive behavior modification (next slide).

An Example from Graphics
(Fran)

A single animation example that demonstrates
key aspects of FRP:

growFlower = stretch size flowergrowFlower = stretch size flower
where size = 1 + integral bSign

bSign =
0 `until`

(lbp ==> -1 `until` lbr ==> bSign) .|.
(rbp ==> 1 `until` rbr ==> bSign)

Computer Music Apps
Can Get Arbitrarily Complex

• We need the best languages, tools,
programming environments, etc.

• (We also need the best algorithms, data
structures, and so on.)

• Special-purpose computer-music languages • Special-purpose computer-music languages
have “issues”:
– often too special-purpose
– sometimes marginal implementations
– usually not designed by PL experts
– huge overhead costs to implement and maintain

Haskore and HasSound

• Domain-specific embedded languages for music
and sound synthesis, respectively.

• Being “reborn” in the context of the Computing
and the Arts initiative at Yale.and the Arts initiative at Yale.

• Being used in two-course sequence in
Fundamentals of Computer Music:
– Algorithmic and Heuristic Composition
– Sound Representation and Synthesis

Functional Music Makes Sense

• Purely functional languages are especially
suited to computer music.

• Declarative: saying "What" instead of "How“.
• Haskell's abstraction mechanisms allow musical

programs that are elegant, concise, powerful:programs that are elegant, concise, powerful:
– higher-order functions
– algebraic data types
– lazy evaluation
– type classes

• Aesthetics matter.

Technology Has Improved

• Computers are much faster!!
• Implementations are much better!!

– run faster
– generate faster code
– more user friendly
– better programming environments

• Libraries are much more plentiful!!
• In particular, the GHC compiler, interpreter, and libraries

are now “industrial strength.”

“A large enough quantitative difference
makes a qualitative difference.”

Design Goals for Haskore II

• The obvious:
simplicity, expressiveness, generality, performance.

• Vertical design:
– Good for signal processing / sound synthesis.
– Good for algorithmic composition.– Good for algorithmic composition.
– Good for reactive/interactive applications.

• Musical User Interface (MUI).
• Real-time sound synthesis.
• Seamless integration of the continuous and discrete.
• Transparency of design.

Glove

composed and rendered
in Haskore by

Tom Makucivich
(a musician!)

with a little help from yours truly

Haskore Basics

Simple representations of basic types:

type Octave = Int
type Dur = Rational
type Pitch = (PitchClass, Octave)
data PitchClass = Cff | Cf | C | Dff | Cs | Df | Css | D | Eff | Dsdata PitchClass = Cff | Cf | C | Dff | Cs | Df | Css | D | Eff | Ds

| Ef | Fff | Dss | E | Es | Ff | F | Gff | Ess | Fs | Gf | Fss | G
| Aff | Gs | Af | Gss | A | Bff | As | Bf | Ass | B | Bs | Bss

data Prim a = Note Dur a | Rest Dur

For example:
Note (1/4) (C,4) :: Prim Pitch -- Middle C quarter note

The Music Type
data Music a = Primitive (Prim a) – primitive note or rest

| Music a :+: Music a -- sequential composition
| Music a :=: Music a -- parallel composition
| Modify Control (Music a) -- modifier

data Control =
Tempo Rational -- scale the tempo

| Transpose AbsPitch -- transposition| Transpose AbsPitch -- transposition
| Instrument InstrumentName -- instrument label
| Phrase [PhraseAttribute] -- phrase attributes
| Player PlayerName -- “player” label

type AbsPitch = Int -- absolute pitch
type PlayerName = String -- player names
type InstrumentName = AcousticGrandPiano

| Vibraphone
| Flute … -- from General Midi standard

For Convenience

• Constructor shorthands:
note d p = Primitive (Note d p)
rest d = Primitive (Rest d)
tempo r m = Modify (Tempo r) m
transpose i m = Modify (Transpose i) m
…

• Note and rest names:
c o d = note d (C, o)
cs o d = note d (Cs, o)
…
qn = 1/ 4; qnr = rest qn
en = 1/ 8; enr = rest en
…

• Example: ii-V-I chord progression in C major:
let dMin = d 3 qn :=: f 3 qn :=: a 3 qn

gMaj = g 3 qn :=: b 3 qn :=: d 4 qn
cMaj = c 3 hn :=: e 3 hn :=: g 3 hn

in dMin :+: gMaj :+: cMaj

Higher-Order Functions

• How can any programmer (or artist!) do without them? ☺
• Two key data abstractions (as for lists): map and fold.
• First map (functor):

mMap :: (a → b) → Music a → Music b

• Key property: mMap id = id

• For example:

type Volume = Int

addVolume :: Volume → Music Pitch → Music (Pitch,Volume)
addVolume v = mMap (λp → (p, v))

scaleVolume :: Rational → Music (Pitch,Volume) → Music (Pitch,Volume)
scaleVolume r = mMap (λ(p,v) → (p, round (r * v)))

Fold (catamorphism)

• More general than mMap.
mFold :: (b → b → b) → (b → b → b) →

(Prim a → b) → (Control → b → b) →
Music a → b

• Key property:

mFold (:+:) (:=:) Primitive Modify = idmFold (:+:) (:=:) Primitive Modify = id

• For example, to compute the duration of a Music value:
dur :: Music a → Dur
dur = mFold (+) max getDur modDur where

getDur (Note d p) = d
getDur (Rest d) = d
modDur (Tempo r) d = d / r
modDur d = d

Super Retrograde

• Reverse (in time) an entire Music value.
• Requires a temporal semantics for (:=:)

• Recall: flip f x y = f y x

revM :: Music a → Music arevM :: Music a → Music a
revM = mFold (flip (:+:)) (=:) Primitive Modify where

m1 =: m2 = let d1 = dur m1
d2 = dur m2

in if d1>d2 then m1 :=: (rest (d1-d2) :+: m2)
else (rest (d2-d1) :+: m1) :=: m2

Lazy Evaluation and Infinite Music

• It is perhaps not surprising that lazy evaluation is useful in many
computer music apps.

• As a simple example:

repeatM :: Music a → Music a
repeatM m = m :+: repeatM m

• This motivates the need for a “truncating” parallel composition
operator (:=/) such that dur (m1 :=/ m2) is equal to the minimum
of dur m1 and dur m2. Thus if one music value is infinite, it gets
truncated to the length of the other one.

Interpretation and Performance

• What does a Music value actually mean?

• An abstract performance is a sequence of musical events:

type Performance = [Event]
data Event = Event PTime InstrumentName

AbsPitch DurT VolumeAbsPitch DurT Volume

• The event Event t i p d v captures the fact that at time t instrument i
sounds pitch p with volume v for a duration d.

From Music to Performance

• To convert a Music value into a Performance, we need a Context:
data Context a = Context

Time -- time that music begins
Player a -- default player
InstrumentName -- default instrument
DurT -- duration of one beat
Key -- key (absolute pitch)
Volume -- default volume

• The function perform does the desired interpretation:

perform :: Context a → Music a → Performance

Musical Equivalence

• Some Music values are not equal as Haskell values, but are
equivalent musically, such as:

(m1 :+: m2) :+: m3 and m1 :+: (m2 :+: m3)

(In other words, we expect (:+:) to be associative.)
• Definition: Two musical values m1 and m2 are equivalent,

∀

• Definition: Two musical values m1 and m2 are equivalent,
written m1 ≡ m2, if and only if:

(∀ c) perform c m1 = perform c m2

• In other words:
“if two things sound the same, they are the same”

• The above equivalence can then be stated as an axiom:
For all m1, m2, and m3:

(m1 :+: m2) :+: m3 ≡ m1 :+: (m2 :+: m3)

An Algebra of Music

• There are eight axioms that comprise an algebra of music.
• For example, (:=:) is not only associative, it is commutative.
• Another (important) example:

Duality of (:+:) and (:=:)
For any m0, m1, m2, and m3 such that dur m0 = dur m2:
(m0 :+: m1) :=: (m2 :+: m3) ≡ (m0 :=: m2) :+: (m1 :=: m3)(m0 :+: m1) :=: (m2 :+: m3) ≡ (m0 :=: m2) :+: (m1 :=: m3)

• Each axiom is provably sound.
• The axiom set is also complete: If two music values are equivalent,

they can be proven so using only the eight axioms.
• Furthermore, the algebra can be made polymorphic: it is valid for

video, audio, animation, even dance.
• The Eight Laws of Polymorphic Temporal Media.
• Allows designing languages having the same “look and feel” across

a variety of base media types.

Available now at your neighborhood cafepress.com…

Haskore’s MUI
(Musical User Interface)

• Design philosophy:
– GUI’s are important!
– The dataflow metaphor (“wiring together components”) is powerful!
– Yet graphical programming is inefficient…

• Goal: an effective set of UI widgets that can be programmed using a
dataflow metaphor at the linguistic level.dataflow metaphor at the linguistic level.

• We achieve this via two levels of abstraction:
– The UI Level

• Create widgets
• Attach titles, labels, etc.
• Control layout

– The Signal Level
• A signal is conceptually a continuous (time-varying) value.
• Sliders, knobs, etc. provide are input widgets.
• Midi out, graphics, etc. are output widgets.

Signals
• Signals are time-varying quantities.
• Conceptually they can be thought of as functions of time:

Signal a = Time → a

• For example, the output of a slider is a time-varying number.
• Key idea: Lift all static functions to the signal level using a family of

lifting functions:
lift0 :: a → Signal alift0 :: a → Signal a
lift1 :: (a → b) → (Signal a → Signal b)
lift2 :: (a → b → c) → (Signal a → Signal b → Signal c)
…

• Haskell’s type classes make this especially easy.
• Conceptually:

s1 + s2 = λt → s1 t + s2 t
sin s = λt → sin (s t)
…

• One can also integrate signals.

Events

• Signals are not enough… some things happen discretely.
• Events can be realized as a kind of signal:

data Maybe a = Nothing | Just a
type EventS a = Signal (Maybe a)

• So events are actually event streams.
• Midi event streams simply have type:• Midi event streams simply have type:

EventS [MidiMessage]

where MidiMessage encodes standard Midi messages such as
Note-On, Note-Off, etc.

• In addition:

midiIn :: Signal DeviceID → UI (EventS [MidiMessage])
midiOut :: Signal DeviceID → EventS [MidiMessage] → UI ()

MUI Examples
• Pitch translator:

do ap ← title "Absolute Pitch" (hiSlider 1 (0, 100) 0)
title "Pitch" (display (lift1 (show ◦ pitch) ap))

• Output Midi note when pitch changes:

do ap ← title "Absolute Pitch" (hiSlider 1 (0, 100) 0)
title "Pitch" (display (lift1 (show ◦ pitch) ap))title "Pitch" (display (lift1 (show ◦ pitch) ap))
let ns = unique ap =>> (λk → [ANote 0 k 100 0.1])
midiOut 0 ns

• Output Midi note at constant rate:

do …
t ← time
f ← title "Tempo" (hSlider (1, 10) 1)
let ticks = timer t (1/f)
let ns = snapshot ticks ap =>>(λk → [ANote 0 k 100 0.1])
midiOut 0 ns

HasSound

• HasSound is the piece of Haskore that focuses on
signal/audio processing and sound synthesis.

• It uses a more sophisticated notion of signal, but is
conceptually very similar.

• Supports multiple clock rates using phantom types and • Supports multiple clock rates using phantom types and
type classes.

• The correspondence between the mathematics and the
program is very strong: even recursive signals work.

• We can generate real-time sound at 44.1 KHz for
moderately-sized instruments. This will get better
through optimization.

Physical Model of a Flute

sinA

5
* 0.1

×

rand

1
flow

lineSeg
env1

lineSeg
envibr

++ ×x – x3

* feedbk1

lowpass
Embouchure delay

delayt (1/fqc/2)

emb

Flute bore delay

delayt (1/fqc)
bore

x

flow

+

* amp

* feedbk2

vibr * breath

sum1 out

lineSeg

env2

returnA

flute

Expressed in HasSound
flute :: Double -> AR -> Double -> CR -> AR -> AR
flute dur amp fqc press breath =

let kenv1 = lineSeg [0, 1.1, 1, 1, 0] [0.06, 0.2, dur-0.16, 0.02] :: CR
kenv2 = lineSeg [0, 1, 1, 0] [0.01, dur-0.02, 0.01] :: CR
kenvibr = lineSeg [0, 0, 1, 1] [0.5, 0.5, dur-1] :: CR
bore = delayt (1/fqc)
emb = delayt (1/fqc/2)
feedbk1 = 0.4feedbk1 = 0.4
feedbk2 = 0.4
env1 = upSample (kenv1 * press)
env2 = upSample kenv2
envibr = upSample kenvibr
flow = rand 1 env1
vibr = sinA 5 * 0.1 * envibr
sum1 = breath * flow + env1 + vibr
flute = bore out
x = emb (sum1 + flute * feedbk1)
out = lowpass 0.27 (x - x**3 + flute * feedbk2)

in out * amp * env2

Sample Results

• f0 and f1 demonstrate the change in the breath parameter.

f0 = flute 3 0.35 440 0.93 0.02
f1 = flute 3 0.35 440 0.93 0.05

• f2 has a weak pressure input so it only plays the blowing noise.

f2 = flute 3 0.35 440 0.53 0.04f2 = flute 3 0.35 440 0.53 0.04

• f3 takes in a gradually increasing pressure signal.

f3 = flute 4 0.35 440 (lineSeg [0.53, 0.93, 0.93] [2, 2]) 0.03

• Sequence of notes

Dance!
• Labanotation is a notation for recording any kind of

human movement.
• Introduced by (Austrian-) Hungarian Rudolf von Laban

(1879-1958) in 1928. In the US development continued,
most notably Ann Hutchinson Guest.

• Shapes represent Columns represent• Shapes represent Columns represent
movement: body parts:

Dance, cont’d

• Labanotation can be captured in an
algebraic datatype not unlike
Haskore.

• Was used to control humanoid
robots in Liwen Huang’s PhD robots in Liwen Huang’s PhD
thesis [Liwen2007].

• Can it instead be used to create
languages and tools to help
animators, dancers, actors, choreo-
graphers, and playwrites?

Conclusions

• “Computational Thinking” is finding its way into many
disciplines, including the arts.

• Not just for traditional art – new modes are emerging,
including interactive / dynamic art.including interactive / dynamic art.

• Providing our finest ideas, languages, and tools is a
good way for Computer Science to have an impact.

• Haskell and functional programming in general are
potentially a good match for this “new way of thinking.”

Thank You!!

(any questions?)

