
Resource Oriented Computing
(R)evolution in REST

Peter Rodgers

© 2008 - 1060 Research Ltd

www.1060research.com

Introduction

• Physicist, Quantum Mechanics
• Hewlett-Packard Labs
• 1999 - Middleman project for Internet

payment / billing / e-contract systems

• Software brittle.
• Web malleable.

• Research Goal: What is the web? How can
we bring its economic properties to software?

www.1060research.com

Publishing Application
(Expose Filesystem)

Application Platform
(Expose DB)

Communication
Medium for 'real' Apps
(Expose Procedures

– SOAP / WS-*)

REST “Web Fights Back”
(Expose Resources

- AJAX / RESTful-WS)

1995 1997 2002 2008

The Web – A brief history

What is the Web?

www.1060research.com

REST

 REpresentation State Transfer
 Client-Server
 Stateless Application Protocol
 Client-side State Management / Stateless Server
 Uniform Interface
 Caching
 Layering
 Code on demand
 Resources are abstract
 Representations physical copy of Resource.

www.1060research.com

Why does the Web/REST work?

• Cost of Change << Value Added
–Low cost of entry
–Legacy co-exists
–Linear scaling
–Client/Server Independence
– Instant deployment

–Web is Resource Oriented: Logical
Requests for Information are isolated
from Physical Implementation and
Typeless

–Web is a Uniform Address Space

www.1060research.com

What is an Address Space?

?

www.1060research.com

What if Software were Resource
Oriented?

Implement a dynamic address space to
resolve resource requests to
physical code execution.

www.1060research.com

Demonstration

 Use URI to express the computation for a resource.
 Active URI

active:{base}+{name}@{uri}...

{base} is function URI
{name} is argument name
{uri} is argument URI

 Microkernel resolves logical URI resource requests to
physical code execution.

 OS-like scheduler manages requests / threads etc...

www.1060research.com

Resource Oriented Computing

• Resource is abstract set of information
• Resource may have one or more Resource

Identifiers
• Computation is the resolution of a Resource

Identifier in an Address Space to a concrete
Representation.

• Representation is a concrete form of the
Resource.

• Representations are immutable.

http://www.1060research.com/netkernel/whitepapers/

www.1060research.com

Dynamic Address Space

• Resource is a point in an address
space

• Address space may import other
address spaces

• Address space resolution is
dynamic

• Dynamic modularity
• Computation: Walk the URI

space to realize a resource
representation.

• URI is program and
unambiguously identifies
resource => Caching

Logical

Physical

www.1060research.com

Uniform Resource Requests

 Uniform model for information processing

– What resource is being requested?
– Create and issue further resource requests.
– Add value.
– Return resource representation.

• Client-Server symmetry

www.1060research.com

Scaling

• Logical URI requests are independent of threads.
• Scheduler assigns threads to requests beneath the logical level.

Everything runs asynchronous.

(1) Each function is a stateless service.
(2) Each computed representation is immutable.

(1) + (2) means that system scales-out across CPU cores in the
same way that Web load balancing scales-out across servers.

• On multi-core we get 100% utilization
and linear scaling.

– Thread safety is guaranteed
“safety interlock”

– Threads never block
– Async development challenge is

removed from developer 0 1 2 3 4 5 6 7 8 9

0

200

400

600

800

1000

1200

1400

1600

1800

Throughput
64bit
Throughput
32bit

www.1060research.com

Caching
• In ROC Resource, Representations have

– Identifiers (URI)
– Measurable value: computation cost.
– Dependency hierarchy.

• Invalidation of dependent resources is
propagated

• Every representation can be cached.
– ie. the result of every computation is cached.

• “Survival of the fittest” cache management.
• System self-tunes to the instantaneous most

computationally efficient set of resources.
• NetKernel trys the cache before lazy evaluation of

functional URIs => known resources are not
recomputed.

• System-wide computational energy is a local minimum.

www.1060research.com

Demonstration

• Extrinsic Recursion Demo...

www.1060research.com

NetKernel – ROC Platform

 1060 NetKernel v3.3
–Resource-oriented application server
–Symmetric client/server
–Large collection of resource models, service libraries and

dynamic languages.
–Linear scaling with CPU cores + micro-caching
–Modular hot-deployment.
–Mature telecoms-class infrastructure (5-years market

quality assurance).
–Dual licensed
–Requires: Java Standard Edition 1.4+

www.1060research.com

Resource Oriented Computing
Summary: Value of the Web,

Inside

• Cost of Change << Value Added
–Low cost of entry
–Legacy co-exists
–Linear scaling
–Client/Server Independence
– Instant deployment

–Resource Oriented: Logical Requests for
Information are isolated from Physical
Implementation and Typeless

–Software becomes a dynamically
composable Address Space

www.1060research.com

Reference

• For whitepapers about ROC:

www.1060research.com

• For NetKernel downloads, community:

www.1060.org

• Contact: peter.rodgers@1060research.com

• Certified training available from
www.skillsmatter.com

mailto:peter.rodgers@1060research.com

www.1060research.com

Extra Material

www.1060research.com

Fibonacci Double Recursion

www.1060research.com

Transrepresentation

• Resource-oriented solution is focused on information,
not types.

• Example, XML: File, Binary Stream, DOM, SAX, Stax,
JDOM all representations of the same XML infoset
information.

• Requestor can express representation preference.
• Software Function can express representation

preference.
• Kernel can intermediate.
• Transreption: Isomorphic transformation of information

from one representational form to another.

www.1060research.com

• Transreption is a dynamic generalization of: Parsing,
Compilation, Configuration state, etc.

• Transreption is an abstraction by which Information
Entropy can be minimized.

• Caching means energy outlay is one-time cost.
• Systemically: information is always maintained in its most

computationally efficient form.
• To an application, parsing/compilation is transparent.
• Requestor-Function relationship is very malleable.
• As a generalization, whole new patterns are possible.

Information Thermodynamics

www.1060research.com

 Everything is a file resource
 File system is logically abstracted as a tree
 Memory is virtual
 Small, task focused tools
 Composition using scripting
 Kernel coordinates everything
 Processes have environmental context

Principles of Unix

www.1060research.com

 Asynchronous Communications
 Loosely Coupled
 Orchestration via Composition Languages
 Service Reusability
 Autonomy – service life-cycle is managed
 Discovery
 Contract

Principles of SOA

www.1060research.com

Malleability

• Modularity
–Software linking is dynamic and re-evaluated for

each request.
–Software relationships can be dynamically

reconfigured.
–Hot Deployment, Version Management, Rollback

• Typeless Interfaces (Dynamic Type Matching)
• Logical-Logical Mappings
• Address-Space Relations – whole new world

of design patterns (beyond OO).

www.1060research.com

3Cs - Construct, Compose,
Constrain

• Constrain
–Transparently layer over constraints
–Structural, Semantic, Access, Policy

• Compose
–Develop address spaces and relationships.
–Compose solutions by scripting (cf Unix)

• Construct
–develop resource object models, accessors,

transports
–Construct only needed if off-the-peg option not

available.

www.1060research.com

CallStack

J2E
E

 C
allS

tack

www.1060research.com

Show me something real...

Linux Serv er

«execution environment»

NetKernel Serv er

HTTP Tranport

8080

443

ASP Consumer
Response Queue

Resource
Oriented Serv ice

URI

URI

Portlet Consumer

JMS TranportRequest Queue

Resource
Oriented Serv iceURI

Resource
Oriented Serv iceURI

Custom
Infrastructure

Serv iceURI

NetKernel Core
Serv iceURIRequest Message

HTTP Request - Response

 RESTful ESB implemented using NetKernel – Jeremy Deane,
Collaborative Consulting for very large US University. Case Study on
infoq.com . http://www.infoq.com/articles/netkernel-casestudy

 Composable architecture

 Hetergeneous Transport

www.1060research.com

Real World Cases

• 1060 Research post-start-up, profitable
– Customers: Telecoms, Insurance, US Govt (Intelligence),

Financial Services, many OEM ISVs,
– Purl.org powered by NetKernel

• Initial adopters were smart architects. Displacing J2EE.
– Integration-server, Application-server, ESB, Multi-transport

Internet peer.
• ROC Empirical Evidence (Vendor Hype!):

– Typical solution is at least 3-4x faster than J2EE, Linear
scaling with cores

– Code size is 10-100x smaller, development time is 10x
faster

– Prototype is Application
– Build more complex systems by composition of layered

resources.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

