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Introduction

* Physicist, Quantum Mechanics
* Hewlett-Packard Labs

* 1999 - Middleman project for Internet
payment / billing / e-contract systems

e Software brittle.
* Web malleable.

* Research Goal: What is the web”? How can
we bring its economic properties to software?
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The Web - A brief history

Publishing Application Communication

(Expose Filesystem) Medium for 'real’ Apps
(Expose Procedures

l — SOAP / WS-%)

1995 1997 2002 2008 What is the Web?

Application Platform REST “Web Fights Back™

(Expose DB) g\b’(&)ose Resources
- AJAX | RESTful-WS)
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REST

* REpresentation State Transfer
* Client-Server
» Stateless Application Protocol

* Client-side State Management / Stateless Server

* Uniform Interface

* Caching

* Layering

* Code on demand

* Resources are abstract

* Representations physical copy of Resource.
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Why does the Web/REST work?

* Cost of Change << Value Added

—Low cost of entry

—Legacy co-exists

—Linear scaling
—Client/Server Independence
—Instant deployment

—Web is Resource Oriented: Logical
Requests for Information are isolated
from Physical Implementation and
Typeless

—Web is a Uniform Address Space

www.1060researc h.com



What is an Address Space?
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What if Software were Resource
Oriented?

Implement a dynamic address space to

resolve resource requests to

physical code execution. Address
Space
4

Request

Code
to
Generate

Representation
—

Hesponse

Representation
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Demonstration

Use URI to express the computation for a resource.
® Active URI

active:{base}+{name}@{uri}...
{base} is function URI

{name} is argument name
{uri} is argument URI

® Microkernel resolves logical URI resource requests to

physical code execution.
® (OS-like scheduler manages requests / threads etc...

www.1060research.com
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Resource Oriented Computing

* Resource is abstract set of information

* Resource may have one or more Resource
|dentifiers

* Computation is the resolution of a Resource
|dentifier in an Address Space to a concrete
Representation.

* Representation is a concrete form of the
Resource.

* Representations are immutable.

http://www.1060research.com/netkernel/whitepapers/
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Dynamic Address Space

Logical

www.1060research.com

Physical

Resource is a point in an address
space

Address space may import other
address spaces

Address space resolution is
dynamic

Dynamic modularity

Computation; Walk the URI
space to realize a resource
representatlon

URI is program and
unamblguously identifies
resourceé => Caching



Uniform Resource Requests

* Uniform model for information processing

- What resource is being requested?

- Create and issue further resource requests.
- Add value.
- Return resource representation.

* Client-Server symmetry
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Scaling

* Logical URI requests are independent of threads.

* Scheduler assigns threads to requests beneath the logical level.
Everything runs asynchronous.

(1) Each function is a stateless service.
(2) Each computed representation is immutable.

(1) + (2) means that system scales-out across CPU cores in the
same way that Web load balancing scales-out across servers.

* On multi-core we get 100% utilization
and linear scaling. 1600

1400

— Thread safety is guaranteed o = Throughpu
“safety interlock” * Trougnpu
— Threads never block o
— Async development challenge is ~
removed from developer vt e e T8 e

www.1060research.com



Caching

In ROC Resource, Representations have
— |dentifiers (URI)
— Measurable value: computation cost.
— Dependency hierarchy.
* Invalidation of dependent resources is
propagated

Every representation can be cached.

— ie. the result of every computation is cached.

“Survival of the fittest” cache management.

System self-tunes to the instantaneous most
computationally efficient set of resources.

NetKernel trys the cache before lazy evaluation of
functional URIs => known resources are not
recomputed.

System-wide computational energy is a local minimum.
<1060>
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Demonstration

* Extrinsic Recursion Demo...

<1060>
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NetKernel - ROC Platform

® 1060 NetKernel v3.3
—Resource-oriented application server
— Symmetric client/server

—Large collection of resource models, service libraries and
dynamic languages.

—Linear scaling with CPU cores + micro-caching
—Modular hot-deployment.

—Mature telecoms-class infrastructure (5-years market
quality assurance).

—Dual licensed
—Requires: Java Standard Edition 1.4+

<1060>
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Resource Oriented Computing
Summary: Value of the Web,
Inside

* Cost of Change << Value Added

—Low cost of entry

—Legacy co-exists

—Linear scaling
—Client/Server Independence
—Instant deployment

—Resource Oriented: Logical Requests for
Information are isolated from Physical
Implementation and Typeless

—Software becomes a dynamically
composable Address Space
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Reference

* For whitepapers about ROC:
www.1060research.com

* For NetKernel downloads, community:
www.1060.0org

* Contact: peter.rodgers@1060research.com

* Certified training available from  skiLLs
www.skillsmatter.com MATTER
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Fibonacci Double Recursion

NetKernel vs Standard - Fibonacci(n)
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Transrepresentation

* Resource-oriented solution is focused on information,
not types.

Example, XML: File, Binary Stream, DOM, SAX, Stax,
JDOM all representations of the same XML infoset
information.

* Requestor can express representation preference.

* Software Function can express representation
preference.

 Kernel can intermediate.

* Transreption: Isomorphic transformation of information
from one representational form to another.
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Information Thermodynamics

* Transreption is a dynamic generalization of: Parsing,
Compilation, Configuration state, etc.

* Transreption is an abstraction by which Information
Entropy can be minimized.

* Caching means energy outlay is one-time cost.

* Systemically: information is always maintained in its most
computationally efficient form.

* To an application, parsing/compilation is transparent.
* Requestor-Function relationship is very malleable.
* As a generalization, whole new patterns are possible.
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Principles of Unix

® Everything is a file resource

® File system is logically abstracted as a tree
® Memory is virtual

® Small, task focused tools

® Composition using scripting

® Kernel coordinates everything

® Processes have environmental context

www.1060researc h.com <1%6 3?}



Principles of SOA

® Asynchronous Communications

® | oosely Coupled

® Orchestration via Composition Languages
® Service Reusability

® Autonomy — service life-cycle is managed
® Discovery

® Contract

www.1060researc h.com <19&S§29§1



Malleability

* Modularity

—Software linking is dynamic and re-evaluated for
each request.

—Software relationships can be dynamically
reconfigured.

—Hot Deployment, Version Management, Rollback
* Typeless Interfaces (Dynamic Type Matching)
* Logical-Logical Mappings

* Address-Space Relations — whole new world
of design patterns (beyond OO).
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3Cs - Construct, Compose,
Constrain

* Constrain
— Transparently layer over constraints
—Structural, Semantic, Access, Policy

* Compose
—Develop address spaces and relationships.
—Compose solutions by scripting (cf Unix)

* Construct

—develop resource object models, accessors,
transports

—Construct only needed if off-the-peg option not
available.

www.1060researc h.com
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Show me something real...

Linux Server

«execution environment»
NetKernel Server

Q HTTP Request -|Response E3 HTTP Tranportm URI Resource

8080 Oriented Service

)\ URI Custom EI
Portlet Consumer URI Infrastru_cture
E Service

S Resource
URI| Oriented Service

— 1 NetKernel Core
URI Service

Request Message <~
— U

Request Queue JMS Tranport >O Resource
url| Oriented Service

Response Queue
ASP Consumer

* RESTful ESB implemented using NetKernel — Jeremy Deane,
Collaborative Consulting for very large US University. Case Study on
infoq.com . http://www.infoq.com/articles/netkernel-casestudy

<1060>
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Real World Cases

* 1060 Research post-start-up, profitable

— Customers: Telecoms, Insurance, US Govt (Intelligence),
Financial Services, many OEM ISVs,

— Purl.org powered by NetKernel
* |nitial adopters were smart architects. Displacing J2EE.

— Integration-server, Application-server, ESB, Multi-transport
Internet peer.

* ROC Empirical Evidence (Vendor Hypel!):

— Typical solution is at least 3-4x faster than J2EE, Linear
scaling with cores

— Code size is 10-100x smaller, development time is 10x
faster

— Prototype is Application

— Build more complex systems by composition of layered
resources.

<1060>
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