Resource Oriented Computing
(R)evolution in REST

Peter Rodgers

<1060>

research

© 2008 - 1060 Researc h Ltd

Introduction

* Physicist, Quantum Mechanics
* Hewlett-Packard Labs

* 1999 - Middleman project for Internet
payment / billing / e-contract systems

e Software brittle.
* Web malleable.

* Research Goal: What is the web”? How can
we bring its economic properties to software?

www.1060researc h.com <19&S§29§1

The Web - A brief history

Publishing Application Communication

(Expose Filesystem) Medium for 'real’ Apps
(Expose Procedures

l — SOAP / WS-%)

1995 1997 2002 2008 What is the Web?

Application Platform REST “Web Fights Back™

(Expose DB) g\b’(&)ose Resources
- AJAX | RESTful-WS)

<1060>

www.1060research.com
resedrch

REST

* REpresentation State Transfer
* Client-Server
» Stateless Application Protocol

* Client-side State Management / Stateless Server

* Uniform Interface

* Caching

* Layering

* Code on demand

* Resources are abstract

* Representations physical copy of Resource.

www.1060researc h.com

Why does the Web/REST work?

* Cost of Change << Value Added

—Low cost of entry

—Legacy co-exists

—Linear scaling
—Client/Server Independence
—Instant deployment

—Web is Resource Oriented: Logical
Requests for Information are isolated
from Physical Implementation and
Typeless

—Web is a Uniform Address Space

www.1060researc h.com

What is an Address Space?

www.1060research.com

resedrc

What if Software were Resource
Oriented?

Implement a dynamic address space to

resolve resource requests to

physical code execution. Address
Space
4

Request

Code
to
Generate

Representation
—

Hesponse

Representation

(1]
www.1060research.com <1g|56ear31

Demonstration

Use URI to express the computation for a resource.
® Active URI

active:{base}+{name}@{uri}...
{base} is function URI

{name} is argument name
{uri} is argument URI

® Microkernel resolves logical URI resource requests to

physical code execution.
® (OS-like scheduler manages requests / threads etc...

www.1060research.com

<1060>

resedrch

Resource Oriented Computing

* Resource is abstract set of information

* Resource may have one or more Resource
|dentifiers

* Computation is the resolution of a Resource
|dentifier in an Address Space to a concrete
Representation.

* Representation is a concrete form of the
Resource.

* Representations are immutable.

http://www.1060research.com/netkernel/whitepapers/

www.1060research.com

<1060>

resedrch

Dynamic Address Space

Logical

www.1060research.com

Physical

Resource is a point in an address
space

Address space may import other
address spaces

Address space resolution is
dynamic

Dynamic modularity

Computation; Walk the URI
space to realize a resource
representatlon

URI is program and
unamblguously identifies
resourceé => Caching

Uniform Resource Requests

* Uniform model for information processing

- What resource is being requested?

- Create and issue further resource requests.
- Add value.
- Return resource representation.

* Client-Server symmetry

www.1060researc h.com

Scaling

* Logical URI requests are independent of threads.

* Scheduler assigns threads to requests beneath the logical level.
Everything runs asynchronous.

(1) Each function is a stateless service.
(2) Each computed representation is immutable.

(1) + (2) means that system scales-out across CPU cores in the
same way that Web load balancing scales-out across servers.

* On multi-core we get 100% utilization
and linear scaling. 1600

1400

— Thread safety is guaranteed o = Throughpu
“safety interlock” * Trougnpu
— Threads never block o
— Async development challenge is ~
removed from developer vt e e T8 e

www.1060research.com

Caching

In ROC Resource, Representations have
— |dentifiers (URI)
— Measurable value: computation cost.
— Dependency hierarchy.
* Invalidation of dependent resources is
propagated

Every representation can be cached.

— ie. the result of every computation is cached.

“Survival of the fittest” cache management.

System self-tunes to the instantaneous most
computationally efficient set of resources.

NetKernel trys the cache before lazy evaluation of
functional URIs => known resources are not
recomputed.

System-wide computational energy is a local minimum.
<1060>

www.1060research.com

resedrch

Demonstration

* Extrinsic Recursion Demo...

<1060>

www.1060research.com resedrch

NetKernel - ROC Platform

® 1060 NetKernel v3.3
—Resource-oriented application server
— Symmetric client/server

—Large collection of resource models, service libraries and
dynamic languages.

—Linear scaling with CPU cores + micro-caching
—Modular hot-deployment.

—Mature telecoms-class infrastructure (5-years market
quality assurance).

—Dual licensed
—Requires: Java Standard Edition 1.4+

<1060>

www.1060research.com resedrch

Resource Oriented Computing
Summary: Value of the Web,
Inside

* Cost of Change << Value Added

—Low cost of entry

—Legacy co-exists

—Linear scaling
—Client/Server Independence
—Instant deployment

—Resource Oriented: Logical Requests for
Information are isolated from Physical
Implementation and Typeless

—Software becomes a dynamically
composable Address Space

www.1060researc h.com <1%6 ?-E

Reference

* For whitepapers about ROC:
www.1060research.com

* For NetKernel downloads, community:
www.1060.0org

* Contact: peter.rodgers@1060research.com

* Certified training available from skiLLs
www.skillsmatter.com MATTER

www.1060researc h.com <19&S§29§1

mailto:peter.rodgers@1060research.com

Extra Material

o
www.1060researc h.com <1%95

Fibonacci Double Recursion

NetKernel vs Standard - Fibonacci(n)

2,252

1,689

-]
E1,126
'—

O Metkernel O Standard

www.1060research.com

NetKernel vs Standard - Fibonacci(n)

14,156

10,617

7,078

Time

3,539

HHHHF”F

34

28 260 24 22 20 18 18 14 12 10 B 6 4 2 0

n

||:| Hetlkernel O Standari

Transrepresentation

* Resource-oriented solution is focused on information,
not types.

Example, XML: File, Binary Stream, DOM, SAX, Stax,
JDOM all representations of the same XML infoset
information.

* Requestor can express representation preference.

* Software Function can express representation
preference.

 Kernel can intermediate.

* Transreption: Isomorphic transformation of information
from one representational form to another.

www.1060researc h.com <1%6 :r]

Information Thermodynamics

* Transreption is a dynamic generalization of: Parsing,
Compilation, Configuration state, etc.

* Transreption is an abstraction by which Information
Entropy can be minimized.

* Caching means energy outlay is one-time cost.

* Systemically: information is always maintained in its most
computationally efficient form.

* To an application, parsing/compilation is transparent.
* Requestor-Function relationship is very malleable.
* As a generalization, whole new patterns are possible.

www.1060researc h.com <1%6 :r]

Principles of Unix

® Everything is a file resource

® File system is logically abstracted as a tree
® Memory is virtual

® Small, task focused tools

® Composition using scripting

® Kernel coordinates everything

® Processes have environmental context

www.1060researc h.com <1%6 3?}

Principles of SOA

® Asynchronous Communications

® | oosely Coupled

® Orchestration via Composition Languages
® Service Reusability

® Autonomy — service life-cycle is managed
® Discovery

® Contract

www.1060researc h.com <19&S§29§1

Malleability

* Modularity

—Software linking is dynamic and re-evaluated for
each request.

—Software relationships can be dynamically
reconfigured.

—Hot Deployment, Version Management, Rollback
* Typeless Interfaces (Dynamic Type Matching)
* Logical-Logical Mappings

* Address-Space Relations — whole new world
of design patterns (beyond OO).

www.1060researc h.com <19&S§29§1

3Cs - Construct, Compose,
Constrain

* Constrain
— Transparently layer over constraints
—Structural, Semantic, Access, Policy

* Compose
—Develop address spaces and relationships.
—Compose solutions by scripting (cf Unix)

* Construct

—develop resource object models, accessors,
transports

—Construct only needed if off-the-peg option not
available.

www.1060researc h.com

A9BISIED HHLU

www.1060research.com

- Lahapoong-msea

SR T T P
S wry apacha. bomcat. wilrat —r = L "
& g apacha coyste gL ’ - vebT, gl
- hwﬂd‘lm'ﬁll'ﬁlﬂ‘oﬂlwm'-
M crgama hezt L i
= " croomon e cobolrn rrecic Doyt nbdepie: sorar L e
o] oo apache ool oo Mgy agrehoy imelog e s temsnor Begrn g nseh Dotk
=Y e ach Seeeckm . s sl
ek v e e B vk el
= o g e sk oot veoui . JeoTon o T e imeale ‘e
o b e IORCK. CRoERy S R Srok s
= M o banech domad ot Dutndridpaltode ek
=i) e cal e, cor. S et s, ek
L3} W i
- ?ﬂlmﬁvlihmmmr
-
- b . Mt P e A B v i T
w1 TR cateing oow Sericshort fxrlhon detiter - v 1
= s dra cor dech arrudn diws |

= H o mme s SR Lol iy Gl o n o e
i vy wovgreouiy 2ol Fiber Thaivony ddoballar | oar e

" Hnmnmﬁm.mn‘mm

4 He e iy

= 1 opssgeaityull s e nordvosie Teindoler |« s ¢

T g Ny, A B P g il - ——

o AR Chor I
gzt ,...HI-

Tomcat / JBoss

o wr
= g o armgmcrits. ot LR ek el e Chanodalier
- ceg gy Do Tt defliee |

/

= 10 W acegssnn by rarces ek P !

T— P -
P ——

= oy oot o Pk ChoiP e B Tk, el Wiee Donoe ek

deflp .
[romyey

R Ll

5 " oromroovmibyall Bl Tk wo s olfilor ainadoliller oo

= 11 coame e catalne oo ke ool e Thaln def TR

hasm o

e

gl

¥ e e

P e — ey P

= v s e ek, vt Framscb Sertat Bobusl e b s
= g ekt P ot O TR ST b b M

Spring MVC |~

/

ekn oy e i
ks viek, e ok p—

5 ey gk b Do Sorvieh bl (oo sevskod Bip g skt oesd, o

Sevdcfiopnt -
- 1m|rrmm et mmosol i Pleson vl Rl bnaesst ininreal | oo

= *m“mmuﬁmlmmw

Spring WebFlow

= o epusringh s Lyt io, Aot c e Tt
= W o 1 'l %
= o e v, rekbon P nbuonk o e =4 ooy s

¥ e ke oot Pk Tl sgrollwrat o

) cag e rgh ek it Y sl s anfemt
= H o ek il o Sl T vl
3 W mx et it omsbor cenberidc e
= g o0y wingrerescd_ et ssppos. TrarsitenCd wisThan. tnat rirgh Fag meb oot
ER X T S T e L B e S g wthow Mg
P TP T SRS ST S PO S — S . NP - ri - -
= UWMLWMNMM| hiw wemd = F®
= T o e Lot T R T AT R i T
- Hnm—iw—*mﬂmdmmlwm g rimgirore i et o)

MVC Action

ADP TX Pm:y'

= mwﬂbﬂummﬂmﬁ
= rm..- ih mpr————
.---“"'."—H" T H Pl T e T == -
= u-mtnnmwm—ﬁ bisa. v
- S "
= H e i
- g, o . i e hcabon proceni
= e . ko e i i
5 e o e, il -

Business Logic

=10 W e Trac e s e & phwan. B g
- Hu’- e e T D AT e T K
= o A i
= e gk, wn beretalliber natelamplacs J
= g o gk) b s a4 v

B H wp b Smomnined meorge R o

= i g b wate brpl Ssssrd vyl mmerge
i g i el e i TR -
= W op EE et
= m«mumnlummwmm:
ER LT T S)
E 4 orp bordrremnt e Dot Mool vend
= g hilerats wvand ol b e el
= . il el kT
= e borndt gepat def Beirac
& M wg b na e AT
= rphbe s, g
=] eaqhiarate pr
T W iephdiaars

Hibernate e

—il

DAO

Spring-Hibernate

T T
i v

i oy wpat e
i cry ke
e o gt
o an wberd

<1069

Show me something real...

Linux Server

«execution environment»
NetKernel Server

Q HTTP Request -|Response E3 HTTP Tranportm URI Resource

8080 Oriented Service

)\ URI Custom EI
Portlet Consumer URI Infrastru_cture
E Service

S Resource
URI| Oriented Service

— 1 NetKernel Core
URI Service

Request Message <~
— U

Request Queue JMS Tranport >O Resource
url| Oriented Service

Response Queue
ASP Consumer

* RESTful ESB implemented using NetKernel — Jeremy Deane,
Collaborative Consulting for very large US University. Case Study on
infoq.com . http://www.infoq.com/articles/netkernel-casestudy

<1060>

www.1060research.com resedrch

Real World Cases

* 1060 Research post-start-up, profitable

— Customers: Telecoms, Insurance, US Govt (Intelligence),
Financial Services, many OEM ISVs,

— Purl.org powered by NetKernel
* |nitial adopters were smart architects. Displacing J2EE.

— Integration-server, Application-server, ESB, Multi-transport
Internet peer.

* ROC Empirical Evidence (Vendor Hypel!):

— Typical solution is at least 3-4x faster than J2EE, Linear
scaling with cores

— Code size is 10-100x smaller, development time is 10x
faster

— Prototype is Application

— Build more complex systems by composition of layered
resources.

<1060>

www.1060research.com resedrch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

