
The Quality Dial

Joshua Kerievsky
joshua@industriallogic.com
Twitter: JoshuaKerievsky

QCon San Francisco QCon San Francisco QCon San Francisco QCon San Francisco 
November 2009

Copyright © 2009, Industrial Logic, Inc.  All Rights Reserved.



The Quality Dial



Adapting Over Conforming

■ Rewards conforming

■ Little trust

■ Constraint oriented

■ Focus on controlCost

Scope

Schedule

Traditional
Iron Triangle

■ Rewards adapting

■ Significant trust

■ Value & quality oriented

■ Focus on delivering results

■ Focus on control

Value

Quality Constraints

Agile
Triangle

Cost Schedule



Traditional Development
■ Project focus (benefits)

• Short term
• Deploy at the end

■ Requirements are fixed, plan is 
fixed and inflexible

Scope:
Requirements

■ Performance: schedule, cost, 
scope

■ Actions: resist change, cut testing, 
cut quality

Cost Schedule

Estimates



Agile Development
■ Product focus (benefits)

• Both short & long term value
• Continuous deployment

■ Goals drive, plans guide, adaptation 
expected

Value
(Releasable Product)

The Agile Triangle

■ Performance: value, quality, 
constraints

■ Actions: adapt to change, adjust 
features, resist quality reduction

Quality
(Reliable,
Adaptable
Product)

Constraints
(cost, schedule, scope)



Evolution of a Feature

Value

I1       I2       I3       I4       I5       I6       I7       I8

Sophistication



The Art of Release Planning





CO2



5.X Software



Only Refactor When Working 
On A User Story?

• Common Agile wisdom suggest that we 
should only refactor code and improve 
quality in conjunction with work on a User 
Story.Story.

• This ensures that we are working on 
Customer-valued work instead of work 
that only Developers value.  



Refactoring Pause

• There are times when you simply need to pay 
down technical debt.  You need a Refactoring 
Pause.  

• We have simply incurred more technical debt 
than we would like and now is a good time to pay than we would like and now is a good time to pay 
it down. 

• There has been a pernicious Singleton that has 
played a central role in our code and is now 
being killed off, because that will open up our 
code for many more design improvements. 



Why Pay Now?

• Why was it better to do this now rather than to 
defer each change until you were passing 
through that part of the code? –Ron Jeffries

• Some smells sprawl themselves across a design. • Some smells sprawl themselves across a design. 
They are not easy to fix, otherwise they'd have 
been fixed a long time ago. Our Singleton friend
is one such smell. Without a dedicated effort 
from 2-3 of us for several days, the Singleton 
would still be as strong and pernicious as ever. 
Today, it is in a hospice.  -Joshua Kerievsky



Knowingly Incurring 
Design Debt? Huh? 

• You are doing TDD and continuous
refactoring, and nonetheless you claim 
that you "knowingly incurred some 
technical debt." How? Why? Please technical debt." How? Why? Please 
explain. Other than the fact that it is 
pernicious how is this technical debt so 
onerous that you choose not to deal with it 
when it emerges?  - Adam Sroka



Pernicious & Easy 
Design Problems

• We needed Playlists in our product. Got them 
working in 2 weeks. We TDDed and refactored 
along the way, however, we were not *merciless* 
in refactoring due to the deadline. For example, 
our UserLibrary class got too fat with our UserLibrary class got too fat with 
responsibilities. Hard to fix? Not at all. It is not a 
pernicious design problem, just an annoyance. 
On the other hand, our Singleton is pernicious. 
We largely ignored it and could've kept on 
ignoring it, yet most of us identify that Singleton 
as a foul smell.  -Joshua Kerievsky



Sacrifice Quality for Speed?

• But, you felt like you had to rush and 
ignore some of your better instincts to do 
it. That smacks of an "epic" to me. 
Wouldn't it have been better to break the Wouldn't it have been better to break the 
playlists up into smaller chunks each of 
which included "merciless" refactoring 
rather than to end up throwing out quality 
in favor of completing the epic inside the 
iteration? - Adam Sroka



Delivery Now, 
Mercilessly Refactor Later

• The key was to design and make playlists a 
reality in time for a deployment to our client.  
We did that in little, test-driven steps, releasing 
along the way. Cutting a few corners on some 
design was an easy decision, especially since we design was an easy decision, especially since we 
planned to mercilessly refactor post release. 
This is simply good business practice.
Blowing a deadline because we want the design 
to be perfect would've been bad business. 

– Joshua Kerievsky



Taking On & Paying Down Debt

• When you run a business, you make 
decisions about taking on debt and paying 
down debt and you do it all the time. 
Problems come when you ignore your debt 
for too long. I think we walk a healthy line for too long. I think we walk a healthy line 
there. We pay debts all of the time and we 
let a few debts accumulate until we get a 
good chance to pay them off. It's all about 
finding the right balance to remain
competitive. - Joshua Kerievsky



Dangerous Advice?
For Experts Only?

• I fear that the advice to perform technical 
work outside of a User Story is very 
dangerous in the context of Scrum and XP.
Particularly for teams that haven't quite Particularly for teams that haven't quite 
understood delivering constant, 
incremental business value in a customer 
friendly way. - Adam Sroka



The Real Danger? 
Not Paying Down Design Debt

• There is no one right way to pay off technical 
debt. We like to do it continuously in the
context of user stories. Yet we also find that 
occasionally we need to stop and attack some 
pernicious design issue. If we did that without pernicious design issue. If we did that without 
approval from the business, we'd be violating a 
core community agreement. So it must
be sanctioned and it must be important enough 
that it is as valuable to do as working on the next 
feature. -Joshua Kerievsky



A Puzzlement

• Josh's experience is almost completely 
inapplicable to any team without those same
characteristics, especially a customer who 
understands the need for refactoring very 
deeply. Understanding that need very deeply is deeply. Understanding that need very deeply is 
risky too. Someone like me, who really gets how 
important good code is, may go too far and 
prefer sweet code when another feature would 
have made for more success. Once we get 
behind, we're in a very risky spot. Yet we WILL 
get behind. It's a puzzlement. – Ron Jeffries



A Driving Metaphor

Good software management is a dance between 
adding features & maintaining quality. If the 
former trumps the latter too much, the
product/company/staff suffer. If the latter 
trumps the former too much, the trumps the former too much, the 
product/company/staff suffer. In an ideal world, 
we strike a balance. In the real world, we 
* push the pedal all-the-way-down now,
* ease up a little over there,
* now hit the breaks,
* now slowly accelerate. - Joshua Kerievsky



New Agile Teams & Debt

• New Agile teams incur tons of technical debt in 
their first few iterations. They haven't learned to 
refactor continuously or lack good design skills 
or they are new to a framework and aren't doing 
things the right way. Within a very short period things the right way. Within a very short period 
of time (e.g. 2-3 weeks), they can produce a 
smelly, unstable foundation on which they 
should *not keep building*. It's better to stop, fix 
the mess, then move on. And that must
be a business decision -- it can't just be the 
developers deciding to do it.  - Joshua Kerievsky



Refactoring Over Features?

• Why does the customer value debt removal more 
than new features? Does this suggest that the 
customer is running low on good
feature ideas?  - Ron Jeffries  

• Sometimes cleaning up really bad smells is more 
valuable to an organizationthan adding new 
features. Not always true, yet if you ignore those 
bad smells for too long, and always push 
features, you can get yourself into a world of 
hurt.  - Joshua Kerievsky



Faster Feature Injection

• Some smells sprawl themselves out across 
a design. They are not easy to
fix, otherwise they'd have been fixed a long 
time ago. Our Singleton friendtime ago. Our Singleton friend
is one such smell. Without a dedicated 
effort from 2-3 of us for several
days, the Singleton would still be as strong 
and pernicious as ever. Today,
it is in a hospice. -JoshuaKerievsky



Clean Code Improves Velocity

• To me, at least, keeping the code base 
sufficiently clean that you can maintain (or 
improve) velocity is a primary
business goal. -John Rothbusiness goal. -John Roth



Cleaning Up Along The Way

• Too many companies ignore the increasing 
complexity of their code, poor quality, etc. 
It's great to be competitive and get code 
out the door, yet for the long haul, it's wise out the door, yet for the long haul, it's wise 
to clean up along the way. -
JoshuaKerievsky



Future Payoff?

When we clean up the code, the cleanup we make 
will only pay off at some future time. Some may 
pay off tomorrow, and some may not pay off for 
weeks or months. None of it pays off now. All 
refactoring that slows feature progress is an refactoring that slows feature progress is an 
investment in the future. What needs to be 
figured out is whether, how, and when, such an 

investment is really worth making. - Ron 
Jeffries



More Features 
Not Always Good!

• I'm not even convinced that features add 
value. Ron seems to assume that. I think 
most products would do well to have more 
analysis about what exact features are 
really needed and will be valued by really needed and will be valued by 
customers rather than the incessant 
injection of speculative features into a 
system and the notion that constant 
feature injection always equals "good 
forward motion." - Joshua Kerievsky



Looping Forever On Bad Design

• It is entirely possible to stop, refactor, be a 
little behind on features, slam in a few 
features, not catch up but screw up the
code, and loop forever, never getting code, and loop forever, never getting 
benefit. We hope that's unlikely ... and it 
is, if people are sufficiently skilled ... which
is part of my point above, that your advice 
is good for experts. - Ron Jeffries



Business Context!

• The above makes no recognition of 
business context. Say a company has been 
slamming in features 2 months for some 
important delivery, doing modest 
refactoring all along the way, yet not refactoring all along the way, yet not 
enough to keep the design very clean. If 
that company stops to refactor, they are 
NOT A LITTLE BEHIND ON FEATURES, 
as you say. They are ahead. - Joshua 
Kerievsky



Refactoring Pause 
An Inferior Decision 

• Yes, stopping to refactor is a business 
decision. In my opinion, it is almost 
always an inferior one. Also, in my 
opinion, we almost never have enough opinion, we almost never have enough 
information to evaluate the decision on a 
business basis. To do so, we would have to 
know the value creation curves with and 
without the pause. - Ron Jeffries



5.2 Release Plan (X Person Months)

Platform Release (X Person Months) Scheduling Release (X Person Months)

Suite Story (i.e. Sized Headline)

Product Stories

Release Stories

Master Rotations Release Budgeting Release

Iteration Iteration Iteration Iteration Stories

Platform Stories

Engineering Tasks


