
Actors—
Towards Object Oriented

Modeling of
Concurrent Systems

Kresten Krab Thorup, Trifork

I’m no expert

I’m on a mission to figure out
how to “think concurrently”.

What factors increase our
Capacity for Complexity?

A. Our system’s ability to perform and
scale as problem size grows.

B. Our ability to understand and
reason about systems
as they grow big. I’m an

intuitive
person...

time

co
m

pl
ex

it
y

ab
ili

ty
performance / scaleability

understandability

object-oriented
modeling

concurrency
modeling?

dynamic
virtual machines

multi-core
hardware

Explicit /
Reactive

Implicit /
Functional

Here we need to
understand and

reason about
parallelism

Here, we
abstract the
parallelism

away

Concurrency Landscape

Concurrency Landscape
Explicit /
Reactive

Implicit /
Functional

Distributed Telephone Systems
Trading Systems

Erlang / CORBA
Message Middleware

Search Engine
Indexing

Model Simulations,
Weather Forecasts

Google/Hadoop
Map-Reduce

Data-Parallelism

Local GUI-applications
Control Systems

Threads

Search Engine
Indexing

Model Simulations,
Weather Forecasts

Google/Hadoop
Map-Reduce

Data-Parallelism

“Thinking Tools” of
Object-Oriented Modeling

objects with identity,
classes with specialization,

virtual methods,
... and patterns.

Object-Oriented
Languages

Object-Oriented
Thinking in non-OO

Languages

Conceptual Model for
Object-Orientation

support emulate

But all of the
objects

are concurrency
ignorant.

Concurrent
Languages

Concurrent
Thinking in non-

Concurrent
Languages

Conceptual Model for
Concurrency

support emulate

Where is the
Conceptual Model for

Concurrent (Object-Oriented)
Programming?

Concurrency Mechanisms

Runtime

Threads, Processes,
Semaphores, Locks,
Monitors, Condition
Variables, Data-Parallelism

Formalisms

CSP, π-calculus,
concurrent linear logic, ...

Patterns

But -
These are

mechanisms and
techniques, not a

conceptual
model

Actors
have the potential to provide

an OO conceptual model
for concurrency

Some Actor Systems

• C.E. Hewitt’s actor model [Hewitt, 1977]

• SAL (Simple Actor Language) [Agha, 1986]

• ABCL/1 [Yonezawa, 1986]

• Concurrent Smalltalk [Tokoro, 1986]

• Actra Smalltalk [Thomas, et.al., 1989]

• Erlang [Armstrong, 1988]

• Clojure [Hickey, 2008], Kilim, ...

• Scala has a nice framework for
programming with actors.

• Kilim, Jetlang, Actors Guild, and
Actor Foundry, ... are frameworks for
actor programming in Java.

• Axum is an actor language based on C#.

Some More Systems

An actor model...

•Is a conceptual model for time/state
management

•Is a conceptual model for
computations and their concurrent
execution

•Mechanisms for abstraction and
composition

shared
immutable

values

Actor Essentials...

message
behaviorGuard/

Queue

actorclient

state

You know this...

UI event
behaviorEvent

Queue

your programuser

state

Gul Agha’s
Actor Model

• In this model, an actor is...

• A mail queue (with identity), and

• A behavior, describing the state and
what to do when a message arrives.

• In many ways, Erlang is similar to this
model.

[Gul Agha, 1986]

If there is time, I can go
through this, as it solves
many of the “issues”
discussed in previous
slides.

An actor’s
behavior can

• Perform computation, if-then-else, ...

• Create new actors,

• Send messages to other actors

• Specify that the next message should be
processed with a different behavior.

Message processing

• Messages are processed asynchronously:
“send” starts a new processing task.

• In Agha’s actor model, a message task can
execute when either

1. The previous behavior completes, or

2. A replacement behavior is given.

which ever comes first.

1 2 ... n

mail queue

Xn

n+1

Xn+1

become Xn+1

a = new Y

1

Y

2 ...

send c to a

c

new
message!new

behavior

new actor

Two things that
introduce concurrency

• Message send, lets the receiving actor start
processing concurrently.

• Become, lets the actor process the next
message concurrently.

A simple cell

behavior cell(value)[msg] ≡
 if msg = 〈FETCH, client〉 then
 send value to client
 if msg = 〈STORE, value2〉 then
 become cell(value2)

x = new cell(0)
send 〈STORE, 1〉 to x

How we are
Modeling Behavior

• Event Loops

• State Tables / State Machines

• Actor Languages

• E, Actra, Erlang

Actor Languages

• Structure your program as many
concurrent event loops.

• Messages between actors (events) are
asynchroneous.

• This seems to introduce a lot of
complexity; we cannot apply our linear
thinking.

Actor Languages

• You need to think of your program as a
team collaboration

• Apply organization theory to program
behavior

• Secretaries, Workers, Managers, Gate
keepeers, Cleaners,

• Hierarchical / Agile, Kanban, ...

• Supply chain, warehousing,

With N+1 on a Team
you need to...

• Manage ordering of events (protocol)

• Manage shared resources (facilities)

• Throttle/Scale work load (workload)

• Hide implementation details

Understanding
Actors
• To really understand actors,

I wrote a simple actor framework for
Java.

• Each “actor” has an interface, and a
behavior that implements that interface.

• The framework creates a proxy that
implement the interface and dispatches via
a thread pool...

Learning by
Doing: Don't Dissect
the Frog, Build It.

Proxy LoggerBehavior

Logger ActorBehavior

client

Thread Pool

Java Actor Framework

«interface»

«class»

«abstract class»

Java Actor Framework
// the actor’s interface
interface Logger {
 void log(String val);
}

// ... and it’s behavior
class LoggerBehavior extends ActorBehavior<Logger> {
 void log(String val) { System.out.println(value); }
}

// ... then use it like this...
Logger logger = new LoggerBehavior().actor();
logger.log(“Something happened”);

Issues with this approach
Sharing. If an actor receives a reference to
a shared object then multiple actors/threads
may mutate that object concurrently.

Threads. If an actor blocks during it’s
operation, it is holding a precious resource,
namely a thread.

Concurrency. If the actor’s methods returns
a value, then the client will block, or what?

Async Reply (a.k.a. Future)

“Server”“Client”

Reply

send

Asynchronous Reply

// the actor’s interface
interface Logger {
 Reply<String> getStatus();
}

class LoggerBehavior extends ActorBehavior<Logger> {
 String getStatus() { return 〈Compute Status〉; }
}

These two correspond

Asynchronous Reply

// ... then use it like this...
Logger logger = new LoggerBehavior().actor();

// get a “future” for the status response
Reply<String> reply = logger.getStatus();

// try to get the response
String status = reply.get();

Async Request

“Server”“Client”

Reply

send

Request

Async Request/Reply

interface Reply<T>{
 T get();
}

interface Request<T> {
 void answer(T value);
}

Async Request/Reply

// the actor’s interface
interface Logger {
 Reply<String> getStatus();
}

class LoggerBehavior extends ActorBehavior<Logger> {
 void getStatus(Request<String> req){
 req.answer (〈Compute Status〉);
 ... continue computation ...
 }
}

These two correspond

• A generalized model for request/reply
interactions, that enables deferring the
decision of

• when (and how long) to wait for a reply

• when to answer a request

• “Feels” like the interactions we have with
agents in the real world.

Async Request/
Reply Pattern

“Server”“Client”

Reply

Request

Async Request/
Reply Pattern

Original actor languages provide “only”
one-way asynchronous message send

• a good building block, but ...

• asynch request/reply provides a way to
bridge the gap to our classic request/
reply thinking.

“Server”“Client”

Reply

Request

Async Request/Reply
interface Reply<T> extends Future<T>{
 T get() throws Exception;
 void forwardTo(Request<T> sink);
}

interface Request<T> {
 void answer(T value);
 void deny(Exception e)
}

interface Filter<IN,OUT> extends
 Request<IN>, Reply<OUT> {
}

Variations

• Actor languages/frameworks provide
different variations of the async request/
reply

• Original Actor Model

• E Programming Language

• Erlang

• Actra (OTI’s concurrent smalltalk)

Promises in E

// ... then use it like this...
Logger logger = new LoggerBehavior().actor();

// get a “future” for the status response
Reply<String> reply = async logger.getStatus();

// install “callback” for the async reply
reply.when(fun(String s) { ... use s ... });

// ... will run in “this thread” to avoid races/sharing.

Async Send
computation can
continue after
message send

Async Reply
computation can
continue after
message reply

Message
Queue

messages are queued
or synchroneous

E YES NO YES

Actra NO YES NO

Erlang YES YES YES

Sharing & Threads

An actor language should also provide
isolation for actors, so that multiple actors
don’t mutate each others / shared state.

Threads are evil - actor languages provide
light-weight processes. Your thinking
changes dramatically when threads are very
cheap.

Kilim Framework

Sharing: The Kilim framework rewrites
and validates Java byte code to check this.
Object references become null in the
sender’s context.

Threads: Kilim rewrites the actor behavior
to CPS (continuation passing style),
permitting actors to “suspend” without
holding a thread.

Scala Actor Framework

Sharing: Scala makes it easy to write
immutable classes/values, but there is no
mechanism to guarantee avoiding sharing.

Threads: Scala provides for a model in
which you avoid having threads for idle
actors, but blocking operations have same
issues as “my” framework.

 Anthropomorphic Style

• Computations are organized in personified roles

• Managers, Administrators, Workers, Couriers,
and Notifiers…

• Each of these have well known pre-defined
semantics which can be subclasses for specific

 applications

• Servers(Managers) must be responsive, so
 delegate most of the work

• Spend most of their life in a “receive any” loop
 waiting for work

• Most computation done by Workers

 W. Morven Gentleman, “Message Passing Between Sequential Processes: the
Reply Primitive and the Administrator Concept”,
Software Practice and Experience, Vol. 11, Pp. 435-466, 1981.

Bedarra Research Labs Ltd.

S1C2 W2

M1
Messenger
(Courier)

S2 W3

C3

C4

C1 W1
Blocked
Workers

Clients

S1C2 W2

M1

Messenger
(Courier)

S2 W3

C3

C4

C1 W1

Blocked
Workers

Clients

Worker

class Worker extends ActorBehavior {

 Worker (Manager mgr) { this.manager = mgr; }

 run() {
 while(true) {
 Work work = manager.getWork(); // blocks!
 perform (work)
 }
 }

}

Manager

class Manager extends ActorBehavior {

 Queue<Request<Work>> workers;

 getWork (Request<Work> req) { // from worker
 workers.enqueue(req);
 }

 handle(Question q, Request<Answer> req){
 workers.dequeue().answer (new Work(q, req));
 }

}

Actor

Worker Server

Courier
Administrator

Dispatcher

ProprietorTransactor
Notifier

Application Specific Actors

Actor Taxonomy
Generic Actors

• Worker: report to managers to perform
computation

• Notifier: event handling Worker
• Courier/Secretary: messenger Worker, used for

delegation and communication
• Transactor: adds ACID properties to computation
• Server: provides services – clocks, actor directory

…
• Proprietor: manages resources, mitigates access
• Administrator: manages worker pool
• Dispatcher: provides asynchronous

Bedarra Research Labs Ltd.

Protocol

• When you interact with an actor, it
becomes apparent that you need some way
to control (and talk about) the ordering of
interactions.

• Java “interfaces” describe what you “may
say”, but says nothing about what makes
sense to say when.

• You want some kind of state machine
abstraction to manage this

Protocol Enforcement

• Erlang - receive uses pattern matching, so
only certain messages are accepted.
Message mismatch is an error in the
receiving actor!

• ABCL/x - receive can look ahead in the
message queue to match certain criteria.

• Some OO-style languages have “guards”
that control which messages are applicable
in the current state.

Erlang Cell

fun cell(nil) ->
 receive
 {put, Value} -> cell(Value);
 end;

fun cell(Value) ->
 receive
 {take, Sender} ->
 Sender ! Value,
 cell(nil);
 end.

Coordination

• Actors don’t easily provide for
coordination or transaction-like
behavior. ... all those asynchronous
messages are rather slippy!

• In many cases, you have to write the
coordination code explicitly, ... tricky!

• Many research projects have worked on
this, e.g. [Frølund96, Callsen94, Varela01].

Transactions & Actors

• Clojure has transactional cells built-in,
otherwise known as “refs”.

• In Erlang and Actra, you would program
these using a framework

• Actra - inherit “Transactor”

• Erlang - Use “tx_server”

• An Actor Model needs to address

• Resources

• Sharing

• Asynchronous Messaging

• But also (patterns for) ...

• Composition,

• Abstraction, and

• Coordination.

Encapsulation & CompositionI’m taking the Erlang full-day
tutorial on Sunday, perhaps
I’ll be enlightened here.

receptionist

environment

Actor B

Actor A

Abstraction

• Some actor languages have
reflection (ABCL/R* family), or
higher-order actors (Erlang), i.e., actors
that produce or consume actor behaviors.
In Erlang, an actor behavior is simply a
function.

• These mechanisms are very powerful for
creating control structures, and meta-
programming for actors.

Actor Patterns

• Active Object, Pipes-
and-Filters

• All of Gregor’s
Integration Patterns
[Messaging]

• Anthropomorphic
Patterns

Thanks!

