
Failure Comes in Flavors

Michael Nygard
mtnygard@gmail.com
www.michaelnygard.com

Part I: Anti-Patterns

Friday, November 20, 2009

mailto:mtnygard@gmail.com
mailto:mtnygard@gmail.com
http://www.michaelnygard.com
http://www.michaelnygard.com

Failure Comes in Flavors

Michael Nygard
mtnygard@gmail.com
www.michaelnygard.com

Friday, November 20, 2009

mailto:mtnygard@gmail.com
mailto:mtnygard@gmail.com
http://www.michaelnygard.com
http://www.michaelnygard.com

About the Author

Michael Nygard

Application Developer/Architect – 20 years
Web Developer – 14 years
IT Operations – 6 Years

2

Friday, November 20, 2009

About This Talk

Consequences of Production Failures

Stability Antipatterns

Failure-Oriented Mindset

Friday, November 20, 2009

Consequences of Failure

Friday, November 20, 2009

High-Consequence
Environments

Users by the million
24 hours a day, 365 days a year
Millions in hardware and software
Revenue in the millions or billions
Highly interdependent systems

Friday, November 20, 2009

Aiming for the Wrong Target

Projects cancelled before release.
The consultants’ exodus.
Strong QA practices.
Clearly defined roles and responsibilities.
Separation between Development and Operations.

Friday, November 20, 2009

Friday, November 20, 2009

What you say:
“It hasn’t really crashed. All the
daemons are still running, it’s just
that the threads got deadlocked on
a connection pool.”

Friday, November 20, 2009

What you say:
“It hasn’t really crashed. All the
daemons are still running, it’s just
that the threads got deadlocked on
a connection pool.”

What they hear:
“... bla bla bla ... dead demons
crashed the pool ...”

Friday, November 20, 2009

Users care about the things they
do–features–not the software or
hardware.

We naturally focus on our work–
the hardware and software–but
we need to focus on features.

Assumption #1

Friday, November 20, 2009

Assumption #2

Failure is an invariant

No matter what you do, some portion of your
application will be malfunctioning some

appreciable part of the time.

Your can choose to engineer safe failure
modes into your system or to accept whatever

random failure modes naturally occur.
Friday, November 20, 2009

Engineering Failure Modes

Tolerance
 Absorb shocks, but do not transmit them.
Severability
 Limit functionality instead of crashing completely.
Recoverability
 Allow component-level restarts instead of rebooting the world.
Resilience
 Recover from transient effects automatically.

These produce consistent availability of features.

Friday, November 20, 2009

Stability Antipatterns

Friday, November 20, 2009

Integration Points

Integrations are the #1 risk to stability.

Your first job is to protect
against integration points.
Every socket, process, pipe,
or remote procedure call
can and will eventually
kill your system.
Even database calls can
hang, in obvious and
not-so-obvious ways.

Examine every arrow in the architecture diagram with deep suspicion

Friday, November 20, 2009

“In Spec” vs. “Out of Spec”

“In Spec” failures
TCP connection refused
HTTP response code 500
Error message in XML
response

Example: Request-Reply using XML over HTTP

Well-Behaved Errors Wicked Errors

“Out of Spec” failures

TCP connection accepted, but no data
sent

TCP window full, never cleared

Server never ACKs TCP, causing very
long delays as client retransmits

Connection made, server replies with
SMTP hello string

Server sends HTML “link-farm” page

Server sends one byte per second

Server sends Weird Al catalog in MP3

Friday, November 20, 2009

Integration Points

Be defensive. Assume every integration
point can hang.
Use timeouts everywhere.
Time out on the whole communication, not
just the connection.
Beware vendor libraries.

Friday, November 20, 2009

Remember This

Beware this necessary evil.

Prepare for the many forms of failure.

Know when to open up abstractions.

Failures propagate quickly.

Large systems fail faster than small ones.

Apply “Circuit Breaker”, “Use Timeouts”, “Use
Decoupling Middleware”, and “Handshaking” to contain
and isolate failures.

Use “Test Harness” to find problems in development.

Friday, November 20, 2009

Chain Reaction

Example:
Suppose S4 goes down

S1 - S3 go from 25% of total
to 33% of total

That’s 33% more load

Each one dies faster
Failure moves horizontally
across tier
Common in search engines
and application servers

Failure in one component raises probability of failure in its peers

Friday, November 20, 2009

Remember This

One server down jeopardizes the rest.
Hunt for Resource Leaks.
Defend with “Bulkheads”.

Friday, November 20, 2009

Failure moves vertically
across tiers

Common in enterprise
services and SOAs

Failure in one system causes calling systems to be jeopardized

Example:
System S goes down, causing
calling system A to get slow or go
down.

Cascading Failure

Friday, November 20, 2009

Remember This

Prevent Cascading Failure to stop cracks
from jumping the gap.
Think “Damage Containment”
Scrutinize resource pools, they get
exhausted when the lower layer fails.
Defend with “Use Timeouts” and “Circuit
Breaker”.

Friday, November 20, 2009

Users

Ways that users cause instability
Sheer traffic

Flash mobs

Click-happy

Malicious users
Screen-scrapers

Badly configured proxy servers

Can’t live with them...

Friday, November 20, 2009

The first type of “bad” user

Front-page viewer

Creates useless sessions

Ties up memory for no reason

Application servers are all fragile to sessions

Users can always create session floods, deliberately
or inadvertently, killing memory

DDoS attacks usually break app servers

Friday, November 20, 2009

Handle Traffic Surges
Gracefully

Turn off expensive features when the system is busy.

Divert or throttle users. Preserve a good experience
for some when you can’t serve all.

Reduce the burden of serving each user. Be
especially frugal with memory.

Hold IDs, not object graphs.

Hold query parameters, not result sets.

Differentiate people from bots. Don’t keep sessions
for bots.

Friday, November 20, 2009

The second type of “bad”
user

Buyers
Most expensive type of user to service

Secure pages, requires more CPU cycles

More pages (10 – 12 per session)

External integrations: credit card processor, address
verification, inventory management, shipping and fulfillment

High conversion rate is bad for the systems!
Your sponsors may not agree.

Friday, November 20, 2009

Remember This

Minimize the memory you devote to each
user.
Malicious users are out there.
But, so are weird random ones.
Users come in clumps: one, a few, or way
too many.

Friday, November 20, 2009

Blocked Threads

Most common form of “crash”: all request threads blocked
Very difficult to test for:

Combinatoric permutation of code pathways.
Safe code can be extended in unsafe ways.
Errors are sensitive to timing and difficult to reproduce
Dev & QA servers never get hit with 10,000 concurrent
requests.

Best bet: keep threads isolated. Use well-tested, high-level
constructs for cross-thread communication.

Learn to use java.util.concurrent or System.Threading

Request handling threads are precious. Protect them.

Friday, November 20, 2009

Example: Blocking calls

Friday, November 20, 2009

Example: Blocking calls

Example:
In a request-processing method:

String key = (String)request.getParameter(PARAM_ITEM_SKU);
Availability avl = globalObjectCache.get(key);

Friday, November 20, 2009

Example: Blocking calls

Example:
In a request-processing method:

String key = (String)request.getParameter(PARAM_ITEM_SKU);
Availability avl = globalObjectCache.get(key);

In GlobalObjectCache.get(String id), a synchronized method:
Object obj = items.get(id);
if(obj == null) {
 obj = remoteSystem.lookup(id);
}
…

Friday, November 20, 2009

Example: Blocking calls

Example:
In a request-processing method:

String key = (String)request.getParameter(PARAM_ITEM_SKU);
Availability avl = globalObjectCache.get(key);

In GlobalObjectCache.get(String id), a synchronized method:
Object obj = items.get(id);
if(obj == null) {
 obj = remoteSystem.lookup(id);
}
…

Remote system stopped responding due to “Unbalanced
Capacities”

Friday, November 20, 2009

Example: Blocking calls

Example:
In a request-processing method:

String key = (String)request.getParameter(PARAM_ITEM_SKU);
Availability avl = globalObjectCache.get(key);

In GlobalObjectCache.get(String id), a synchronized method:
Object obj = items.get(id);
if(obj == null) {
 obj = remoteSystem.lookup(id);
}
…

Remote system stopped responding due to “Unbalanced
Capacities”
Threads piled up like cars on a foggy freeway.

Friday, November 20, 2009

Remember This

Scrutinize resource pools. Don’t wait
forever.
Use proven constructs.
Beware the code you cannot see.
Defend with “Use Timeouts”.

Friday, November 20, 2009

Attacks of Self-Denial

Ever heard this one?
A retailer offered a great promotion
to a “select group of customers”.
Approximately a bazillion times the
expected customers show up for the
offer.
The retailer gets crushed,
disappointing the avaricious and
legitimate.

It’s a self-induced Slashdot effect.

Good marketing can kill your system at any time.

Friday, November 20, 2009

Attacks of Self-Denial

Ever heard this one?
A retailer offered a great promotion
to a “select group of customers”.
Approximately a bazillion times the
expected customers show up for the
offer.
The retailer gets crushed,
disappointing the avaricious and
legitimate.

It’s a self-induced Slashdot effect.

Good marketing can kill your system at any time.

Victoria’s Secret:
Online Fashion Show

BestBuy: XBox 360
Preorder

Amazon: XBox 360
Discount

Anything on
FatWallet.com

Friday, November 20, 2009

Defending the Ramparts

Avoid deep links
Set up static landing pages
Only allow the user’s second click
to reach application servers
Allow throttling of incoming users
Set up lightweight versions of
dynamic pages.
Use your CDN to divert users
Use shared-nothing architecture

One email I saw went out
with a deep link that

bypassed Akamai. Worse,
it encoded a specific server
and included a session ID.

Another time, an email went
out with a promo code. It

could be used an unlimited
number of times.

Once a vulnerability is
found, it will be flooded

within seconds.

Friday, November 20, 2009

Remember This

Keep lines of communication open
Support the marketers. If you don’t, they’ll
invent their way around you, and might
jeopardize the systems.

Protect shared resources
Expect instantaneous distribution of exploits

Friday, November 20, 2009

Scaling Effects

Ratios in dev and QA tend to be 1:1
Web server to app server

Front end to back end

They differ wildly in production, so designs
and architectures may not be appropriate

Understand which end of the lever you are sitting on.

Friday, November 20, 2009

Example: Point to Point
Cache Invalidation

Development
Dev Server

App 1

1 server
1 local call

No TCP connections

QA

2 servers
1 local call

1 TCP connection

Production

8 servers
1 local call

7 TCP connection

QA Server 1

App 1

QA Server 2

App 2

App Server

App 1

App Server

App 2

App Server

App 3

App Server

App 4

App Server

App 5

App Server

App 6

App Server

App 7

App Server

App 8

Friday, November 20, 2009

Example: Point to Point
Cache Invalidation

Development
Dev Server

App 1

1 server
1 local call

No TCP connections

QA

2 servers
1 local call

1 TCP connection

Production

8 servers
1 local call

7 TCP connection

QA Server 1

App 1

QA Server 2

App 2

App Server

App 1

App Server

App 2

App Server

App 3

App Server

App 4

App Server

App 5

App Server

App 6

App Server

App 7

App Server

App 8

Friday, November 20, 2009

Example: Point to Point
Cache Invalidation

Development
Dev Server

App 1

1 server
1 local call

No TCP connections

QA

2 servers
1 local call

1 TCP connection

Production

8 servers
1 local call

7 TCP connection

QA Server 1

App 1

QA Server 2

App 2

App Server

App 1

App Server

App 2

App Server

App 3

App Server

App 4

App Server

App 5

App Server

App 6

App Server

App 7

App Server

App 8

Friday, November 20, 2009

Example: Point to Point
Cache Invalidation

Development
Dev Server

App 1

1 server
1 local call

No TCP connections

QA

2 servers
1 local call

1 TCP connection

Production

8 servers
1 local call

7 TCP connection

QA Server 1

App 1

QA Server 2

App 2

App Server

App 1

App Server

App 2

App Server

App 3

App Server

App 4

App Server

App 5

App Server

App 6

App Server

App 7

App Server

App 8

Friday, November 20, 2009

App 1 App 2

Common

Service

App 3 App 4 App 5 App 6 App 7 App 8

Example: Shared Resources

Shared resources commonly appear as lock managers, load
managers, query distributors, cluster managers, and message

gateways. They’re all vulnerable to scaling effects.

Friday, November 20, 2009

Remember This

Examine production versus QA
environments to spot scaling effects.
Watch out for point-to-point
communications. It rarely belongs in
production.
Watch out for shared resources.

Friday, November 20, 2009

Unbalanced Capacities

Online
Store

SiteScope
NYC

Customers

SiteScope
San Francisco

20 Hosts

75 Instances

3,000 Threads

Order
Management

6 Hosts

6 Instances

450 Threads

Scheduling

1 Host

1 Instance

25 Threads

Traffic floods sometimes start inside the data center walls.

Friday, November 20, 2009

Unbalanced Capacities

Unbalanced capacities is a type of scaling effect
that occurs between systems in an enterprise.
It happens because

All dev systems are one server

Almost all QA environments are two servers

Production environments may be 10:1 or 100:1

May be induced by changes in traffic or behavior
patterns

Friday, November 20, 2009

Remember This

Examine server and thread counts
Watch out for changes in traffic patterns
Stress both sides of the interface in QA
Simulate back end failures during testing

Friday, November 20, 2009

SLA Inversion
Surviving by luck alone.

Frammitz

99.99%

Corporate MTA

99.999%

SpamCannon's

DNS

98.5%

SpamCannon's

Applications

99%

Corporate DNS

99.9%

Inventory

99.9%

Message

Broker

99%

Partner 1's

Application

No SLA

Partner 1's

DNS

99%

Message

Queues

99.99%

Pricing and

Promotions

No SLA

What SLA can Frammitz really guarantee?
Do your web servers have

to ask DNS to find the
application server’s IP

address?

Absent other protections,
the best SLA you can
offer is the worst SLA

provided by your
dependencies.

The dreaded SPOF is a
special case of SLA

Inversion.

Friday, November 20, 2009

Remember This

Don’t make empty promises. Be sure you can
deliver the SLA you commit to.
Examine every dependency. Verify that they can
deliver on their promises.
Decouple your SLAs from your dependencies’.
Measure availability by feature, not by server.
Be wary of “enterprise” services such as DNS,
SMTP, and LDAP.

Friday, November 20, 2009

Unbounded Result Sets

Development and testing is done with small data sets
Test databases get reloaded frequently
Queries that perform acceptably in development and
test bonk badly with production data volume.

Bad access patterns can make them very slow

Too many results can use up all your server’s RAM or take
too long to process

You never know when somebody else will mess with your
data

Limited resources, unlimited data volume

Friday, November 20, 2009

Unbounded Result Sets:
Databases

SQL queries have no inherent limits
ORM tools are bad about this
It starts as a degenerating performance problem, but
can tip the system over.
For example:

Application server using database table to pass message between servers.

Normal volume 10 – 20 events at a time.

Time-based trigger on every user generated 10,000,000+ events at midnight.

Each server trying to receive all events at startup.

Out of memory errors at startup.

Friday, November 20, 2009

Unbounded Result Sets: SOA

Often found in chatty remote protocols, together
with the N+1 query problem
Causes problems on the client and the server

On server: constructing results, marshalling XML

On client: parsing XML, iterating over results.

This is a breakdown in handshaking. The client
knows how much it can handle, not the server.

Friday, November 20, 2009

Remember This

Test with realistic data volumes
Scrubbed production data is the best.

Generated data also works.

Don’t rely on the data producers. Their
behavior can change overnight.
Put limits in your application-level protocols:

WS, RMI, DCOM, XML-RPC, etc.

Friday, November 20, 2009

Integration Points

Cascading Failures

Users

Blocked Threads

Attacks of
Self-Denial

Scaling Effects

Unbalanced
Capacities

Slow Responses

SLA Inversion

Unbounded
Result Sets Use Timeouts

Circuit Breaker

Bulkheads

Steady State

Fail Fast

Handshaking

Test Harness

Decoupling
Middleware

counters

prevents

counters

counters

reduces impact

mitigates

finds problems in

damage

mutual

aggravation

found

near
leads to

leads toleads to

results from

violating

counters

counters

counters can avoid

leads to

avoids

counters

counters

exacerbates

lead to

works with

counters

leads to

Chain Reactions

Friday, November 20, 2009

Questions?

Michael Nygard
mtnygard@gmail.com
www.michaelnygard.com

Please remember to fill out a
session feedback form.

2

Friday, November 20, 2009

mailto:mtnygard@gmail.com
mailto:mtnygard@gmail.com
http://www.michaelnygard.com
http://www.michaelnygard.com

