Failure Comes in Flavors
Part |I: Anti-Patterns

Release It!

Design and Deploy
Production-Ready Software

e

Michael T. Nygard

Michael Nygard
mtnygard@gmail.com
Wwww.michaelnygard.com

Friday, November 20, 2009

mailto:mtnygard@gmail.com
mailto:mtnygard@gmail.com
http://www.michaelnygard.com
http://www.michaelnygard.com

Faillure Comes in Flavors

Release It!

Design and Deploy
Production-Ready Software

Michael T. Nygard

Michael Nygard
mtnygard@gmail.com
Wwww.michaelnygard.com

Friday, November 20, 2009

mailto:mtnygard@gmail.com
mailto:mtnygard@gmail.com
http://www.michaelnygard.com
http://www.michaelnygard.com

Michael Nygard

Application Developer/Architect — 20 years
Web Developer — 14 years
IT Operations — 6 Years

Friday, November 20, 2009

Consequences of Production Failures

Stability Antipatterns

Failure-Oriented Mindset

Friday, November 20, 2009

Consequences of Failure

High-Consequence
Environments

Users by the million

24 hours a day, 365 days a year
Millions In hardware and software

Revenue In the millions or billions

Highly inferdependent systems

-
|

Aiming tor the vwrong larget

Projects cancelled before release.

The consultants’ exodus.

Strong QA practices.

Clearly defined roles and responsibillities.
Separation between Development and Operations.

Friday, November 20, 2009

. T

What you say:

“It hasn’t really crashed. All the
daemons are still running, it's just
that the threads got deadlocked on
a connection pool.”

Friday, November 20, 2009

What you say:

“It hasn’t really crashed. All the
daemons are still running, it's just
that the threads got deadlocked on
a connection pool.”

What they hear:

... blablabla ... dead demons
crashed the pool ..””

Friday, November 20, 2009

Assumption #1

Users care about the things they
do—features—not the software or

hardware.

We naturally focus on our work— B,
the hardware and software—but
we need to focus on features.

Friday, November 20, 2009

I Assumption #2
| Failure I1s an invariant

No matter what you do, some portion of your
application will be malfunctioning some
appreciable part of the time.

Your can choose to engineer safe failure
modes Into your system or to accept whatever
random failure modes naturally occur.

Engineering Failure Modes

Jolerance
Absorb shocks, but do not transmit them.

Severability
Limit functionality instead of crashing completely.

Recoverability
Allow component-level restarts instead of rebooting the world.

Resilience
Recover from transient effects automatically.

These produce consistent availability of features.

Friday, November 20, 2009

Stability Antipatterns

Integration Points

Examine every arrow. in the architecture diagram with deep suspicion

- Integrations are the #1 risk to stability.

Shippi

< Your first job is to protect Selecion
against integration points.

"Telling" Customer
Pages Account

Eross-se
< Every socket, process, pipe, et .
or remote procedure call o o e W
can and will eventually Tocgeing || bitis
Kill ' your system.

< Even database calls can
hang, in obvious and
not-so-obvious ways.

Friday, November 20, 2009

Friday, November 20, 2009

~eply using XIVIL over R [I'P

C

N0 data

qug very.
SMits

oNNection made, server replies with
SIVIT'P hello string

rsends HTML “link-farm™ page
Nds one byte per second

or sends \VWeird Al catalog in MP3

Wicked Errors

' V.Vi aYga
lIMeouts everywnere.

10N L | N
LI 1O //HCC

Friday, November 20, 2009

Remember [his

< Beware this necessary evil.

- Prepare for the many forms of failure.

< Know when to open up abstractions.

< Fallures propagate quickly.

< Large systems fail faster than small ones.

b 14 b 14

< Apply “Circuit Breaker”, “Use Timeouts™, “Use
Decoupling Middleware”, and "Handshaking” to contain
and isolate failures.

< Use "lest Harness™ to find problems in development.

Friday, November 20, 2009

Chain Reaction

Failure in one component raises probability of failure in its peers

- Example:
< SuUppose S4 goes down

< S1-S8go from 25% of total
10 35% of: total

< That's 33% more load
< Each one dies faster

< Failure moves horizontally
across tier

< Common In search engines
and application servers

Friday, November 20, 2009

amembper Ihis

Friday, November 20, 2009

Cascading Failure

Faillure in one system causes calling systems to be jeopardized

Example:

System S goes down, causing
calling system A to get slow or go

down.
A1 An

< Failure moves vertically
across tiers

Friday, November 20, 2009

. < Common in enterprise
| services and SOAs

Remember [his

- Prevent Cascading Failure to stop cracks
from jumping the gap.

< Think "Damage Containment”

< Scrutinize resource pools, they get
exhausted when the lower layer falls.

T Defend with “Use Timeouts” and “Circuit
Breaker”.

Friday, November 20, 2009

Friday, November 20, 2009

Handle Traffic Surges
Gracefully

< Turn off expensive features when the system is busy.

< Divert or throttle users. Preserve a good experience
for some when you can't serve all.

< Reduce the burden of serving each user. Be
especially frugal with memory.

< Hold IDs, not object graphs.
< FHold query parameters, not result sets.

< Differentiate people from bots. Don't keep sessions
for bots.

Friday, November 20, 2009

requires

viere pages (10 — 12

=

cp%@fﬁﬂlw‘ﬁgraﬂom:
‘ on, inventory mar

clS

Friday, November 20, 2009

amembper Inis

< Minimize th
USEr

< Malliclic

ady

Friday, November 20, 2009

Blocked Threads

Request handling threads are precious. Protect them.

- Most common form of “crash™: all request threads blocked
< Very difficult to test for:

< Combinatoric permutation ofi code pathways.

< Safe code can be extended In unsafe ways.

< Errors are sensitive to timing and difficult to reproduce

< Dev & QA servers never get hit with 10,000 concurrent
reguests.

< Best bet: keep threads isolated. Use well-tested, high-level
constructs for cross-thread communication.

< Learn to use java.util.concurrent or System. I'hreading

Friday, November 20, 2009

Friday, November 20, 2009

Friday, November 20, 2009

A SYNcNronized metnod:

Friday, November 20, 2009

2 E/emp!%,

04a:

i ‘ =4 / » 5 = |

‘f! A — (’L
ing) request.c

globallObje

)

Synchronized metnoa:

Friday, November 20, 2009

- Example:
N arequest-preocessing metnoa:

(SELX1ng) request.g

= globalObjec

)

)balObjectCache.gel(string 1a), a synchronizea metnod:

1d) s

ng aue

a foggy freeway.

Friday, November 20, 2009

amembper Inis

Friday, November 20, 2009

greem oroerTWrw
' ‘S er\HrJ .

<A Qoro/fT2|~L/ﬁloA/HJQr (

d CUSTOMErS Sk vilhj

Friday, November 20, 2009

[

‘J-Dsmﬁial

. any time.

< Approxim afJ/ a bazillic

on
d cUstomers show. lJrJ

Anything on
FatVVallet.com

Friday, November 20, 2009

Defending the Ramparts

o |
= : : One emall | saw went out
- Avold deep links with a deep link that
- : : bypassed Akamai. \Worse,
Set up static Iandmg Pages It encoded a specific server
- Only allow the user’s second click el st S

{o reach application servers

Another time, an email went

< Allow throttling of iIncoming users out with a promo code. It
could be used an unlimited
< Set up lightweight versions of number of times.

dynamic pages.

Once a vulnerability is
found, it will be flooded
within seconds.

< Use your CDN to divert users
< Use shared-nothing architecture

Friday, November 20, 2009

e o | - | ayY o I " o
Remembper 1NiISs

oI communicati

nvent 1

ijQrMW

Friday, November 20, 2009

Jnaerstand wnich end of the lever you are sitting on.

Y) 1
 [Tay NOU |

Friday, November 20, 2009

Development

é)

Dev Server

(=

_

Friday, November 20, 2009

QA Server 1

QA Server 2

>
App 2

‘ A ’
PPl | 4

—

—

NV

v

A

o o

-

Friday, November 20, 2009

QA Server 2

N

NV

v

A

o o

-

Friday, November 20, 2009

QA Server 2

N

Development

Dev Server

App 1

QA

QA Server 1 QA Server 2
App 1 App 2

.

1 server
1 local call
No TCP connections

o

2 Servers
1 local call
1 TCP connection

Example: Point to Point
Cache Invalidation

(Production

3 servers
1 local call
/ TCP connection

Friday, November 20, 2009

Example: Shared Resources

App 1 App 2 App 3 App 4 App 5 App 6 App 7 App 8

gateways.

Shared resources commonly appear as lock managers, load
managers, query distributors, cluster managers, and message

hey re all vulnerable to scaling effects.

Friday, November 20, 2009

~» - Rkemember Ihis

— i , J
< EXamine proauct

‘/7

%,ﬁ/f””fff’ffny
/Va-zf :,M

UNIC
Qfgv UC \Qﬂ

< VWatch out to

Friday, November 20, 2009

Unbalanced Capacities

Traffic floods sometimes start inside the data center walls.

SiteScoN Online
NYC Store Order

Scheduling
Management
4 6 Hosts 1 Host
20 Hosts 6 Instances 1 Instance
Customers 75 Instances 450 Threads 25 Threads
/ 3,000 Threads
SiteScope

San Francisco

Friday, November 20, 2009

Unbalanced Capacities

- Unbalanced capacities Is a type of scaling effect
that occurs between systems in an enterprise.

< It happens because
< All'dev systems are one server
< Almost all QA environments are two servers

< Production environments may be 10:1 or 100:1

< May be induced by changes in traffic or behavior
patterns

Friday, November 20, 2009

e o | - | ayY o I " o
Remembper 1NiISs

Friday, November 20, 2009

SLA Inversion

Surviving by luck alone.

Absent other protections,

Partner 1's Partner 1's Message Message
Application DNS Queues Broker the beSt SLA you Call

No SLA 99% 99.99% 99% offer is the worst SLA

provided by your
dependencies.

Inventory Frammitz s:)c:iiz?,: (

99.9% 99.99%

oSk The dreaded SPOF is a
special case of SLA
lnversion.

SpamCannon's SpamCannon's

Corporate MTA Corporate DNS

DNS Applications
o, o
99.999% 99.9% 98.5% 99% {

Do your web servers have
to ask DNS to find the

VWhat SLA can Frammitz really guarantee? application server’s IP
address?

Friday, November 20, 2009

Remember [his

< Don't make empty promises. Be sure you can
deliver the SLA you commit to.

< Examine every dependency. Verity that they can
deliver on their promises.

< Decouple your SLAs from your dependencies .
< Measure availability by feature, not by server.

< Be wary of “enterprise” services such as DNS,
SMTP, and LDAP.

Unbounded Result Sets

Limited resources, unlimited data volume

- Development and testing is done with small data sets

- Test databases get reloaded frequently

< Queries that perform acceptably in development and
lest bonk badly with production data volume.

< Bad access patterns can make them very slow

< oo many results can use up all your server's RAM or take
{oo long to process

< You never know when somebody else will mess with your
data

Friday, November 20, 2009

Unbounded Result Sets:
Databases

—

- SQL queries have no inherent limits
- ORM tools are bad about this

< |t starts as a degenerating performance problem, but
can tip the system over.

< For example:

< Application server using database table to pass message between servers.

< "Normal velume 10 — 20 events at a time.

< lime-based trigger on every user generated 10,000,000+ events at midnight.
< Each server trying to receive all events at startup.

< Out of memory errors at startup.

Friday, November 20, 2009

Unbounded Result Sets: SOA

- Often found In chatty remote protocols, together
with the N+1 query problem

< Causes problems on the client and the server
< On server. constructing results, marshalling XML

< On client: parsing XIVIL, iterating over results.

< This Is a breakdown in handshaking. The client
knows how much it can handle, not the server.

emember Inis

< lest with |

nlication-level protocols:

Friday, November 20, 2009

Scaling Effects

SLA Inversion

Attacks of Decoupling
Self-Denial & Middleware

(Users J
Bulkheads Blocked Threads Test Harness
found . .
finds problems in

mutual

Chain Reactions aggravation Integration Points

results from

counters violating

Steady State

Slow Responses Cascading Failures

Unbalanced
Fail Fast

Circuit Breaker

Capacities

counters can avoid

. Unbounded .

Friday, November 20, 2009

Questions?

Please remember to fill out a
session feedback form.

Release It!

Design and Deploy
Production-Ready Software

Michael Nygard
mtnygard@gmail.com
Wwww.michaelnygard.com

Friday, November 20, 2009

mailto:mtnygard@gmail.com
mailto:mtnygard@gmail.com
http://www.michaelnygard.com
http://www.michaelnygard.com

