- " .

AMAZON S3: ARCHITECTING FOR
RESILIENCY IN THE FACE OF
MASSIVE LOAD

Jason McHugh

SETTING THE STAGE

e Architecting for Resiliency in the Face of Massive
Load
— Resiliency -> High availability
— Massive load
1. Many requests
2. Suddenly and with little or no warning
3. Request patterns differ from the norm

—

o3
5—3

azon
services"

SETTING THE STAGE

~7000ms
l | |
151ms -~ 293ms
e Y ‘19:
17:19:03.122 1780
NN —
| :
< ' e - Time
Zero requests 3,001 requests Within a minute
For Object request rate
1,097 requests
“Foo” 9 reached 30,000 rps
b Y ' where it stayed for
34,944 requests roughly an hour.
June 17t 2010
- Wiy
wikF amazon
%F webservices"

AVAILABILITY IS CRITICAL

e Customers
— Don’t care if you are a victim of your own success
— Expect proper architecture

e The more successful you are

— The harder this problem becomes
— The more important properly handling becomes

e Features
— Availability
— Durability
— Scalability
— Performance e
Wi amazon

5-

services"

KEY TAKEAWAYS

e This Is a hard problem
e Many techniques exist
» A successful service has to solve this problem

OUTLINE

e Amazon Simple Storage Service (S3)
e Presenting the problem

e Three techniques
— Incorporating caching at scale
— Adaptive consistency to handle flash crowds
— Service protection

e Conclusion

—
)

o
5—3

azon
services"

AMAZON S3

e Simple storage service

e Launched: March 14, 2006

e Simple key/value storage system

e Core tenets: simple, durable, secure, available

e Financial guarantee of availability
— Amazon S3 has to be above 99.9% available

e Eventually consistent

PRESENTING THE PROBLEM

e None of this is unique to S3

e Super simple architecture

e Natural evolution to handle scale

e The core problem in all distributed systems

A SIMPLE ARCHITECTURE

WS1 WS 2 WS 3
—
N—
" Data Store [*
A
o NN
A amazon

5-

services"

A SIMPLE ARCHITECTURE

WS 4 WS 1 WS 2 WS 3 WS 5

‘ Data Store [| Data Store \

—

o3
5—3

azon
services"

A SIMPLE ARCHITECTURE

N/

Load
Balancing

IWS41lws1' lwsz} lws3]|wss}

H Data Store [| Data Store H

CORE PROBLEMS

e Weaknesses with simple architecture

— Not cost effective

— Correlation in customer requests to machine
resources creates hotspots

— A single machine hotspot can take down the entire
service

e Even when a request need not use that machine!

—
)

o
5—3

azon
services"

ILLUSTRATING THE CORE PROBLEMS

OO OOOOO @

SO

Load

IWS41lws1' lwsz} lws3]|wss}

H Data Store [| Data Store H

MASSIVE LOAD

e Massive load characteristics

— Large, unexpected, request pattern differs
e Capacity planning is a different problem
e Massive load manifests itself as hotspots
e Can’t you avoid hotspots with the right design?

HOTSPOT MANAGEMENT - FALLACIES

e Fallacy: When a fleet is stateless then you don’t
have to worry

— Consider webservers and load balancers

1/1

40 Gbps HW LB 1 o HW LB 2 40 Gbps

S LN

Ws1] WS 2] Ws3] Ws4 1

i
-.

*
L

WiiF amazon
services"

5-

HOTSPOT MANAGEMENT - FALLACIES

e Fallacy: You only have to worry about the
customer objects which grow the fastest
— S3 object growth is the fastest
— S3 buckets grow slowly
— But bucket information is accessed for all requests
— Buckets become hotspots

e Don’t conflate orders of growth with hotspots

—

o3
5—3

azon
services"

HOTSPOT MANAGEMENT - FALLACIES

e Fallacy: Hash distribution of resources solves all
hotspot problems

— Great job of distributing even the most granular unit
accessed by the system

— Problem is the most granular unit can become
popular

—

o3
5—3

azon
services"

SIMPLIFIED S3 ARCHITECTURE

“ Get “/foo”

Webserver

Byte Stream

Storage

—

o3
5—3

azon
services"

SIMPLIFIED S3 ARCHITECTURE

Network Boundary !

Webserver 1 Webserver 2 Webserver 3 Webserver 4 “es Webserver W

4 ‘L

Storage 1 Storage 2 Storage 3 Storage S
Key A, J, R, ... Key B, K, S, ... Key C, L, T, ...
_ _NiNs
wikF amazon

¥ webservices"

Resiliency Techniques

e Caching at Scale
e Adaptive Consistency
e Service Protection

RESILIENCY TECHNIQUE — CACHING AT SCALE

e Architecture on prior slide creates hotspots

e |ntroduce a cache to avoid hitting the storage
nodes

— Requests can be handled higher up in the stack
— Serviced out of memory

e Cache increases availability

— Negative impact on consistency
— Standard CAP stuff

—

o3
5—3

services"

RESILIENCY TECHNIQUE — CACHING AT SCALE

e Caching is all about the cache hit rate

e At scale a cache must contend with:
— Working set size and the long tail
— Cache invalidation techniques
— Memory overhead per cache entity
— Management overhead per cache entity

—

o3
5—3

azon
services"

RESILIENCY TECHNIQUE — CACHING AT SCALE

e Naive techniques won’t work
e Caching via distributed hash tables

— Primary advantages: distribution of requests to
cache nodes can use different dimensions of
iIncoming request to route

—

o3
5—3

azon
services"

RESILIENCY TECHNIQUE — CACHING AT SCALE

Network Boundary

/_/i/‘\/

Webserver 1

Webserver 2

Webserver 3

Webserver 4

Storage 1
Key A, J, R, ...

o

Cache 2

N\N

Storage 2
Key B, K, S, ...

Webserver N

|

Cache C
KeyT, ...

Storage 3

Key C, L, T, ...

|

Storage S

1L

o
A amazon
i webservices"

RESILIENCY TECHNIQUE — CACHING AT SCALE

e Mitigate the impact on consistency

e Cache Spoilers
— Ruins cached value on a node
— Caused by
e Fleet membership inconsistencies
e Network unreachability

e [nability to communicate with proper machine
due to transient machine failures

—

o3
5—3

azon
services"

CACHE SPOILER IN ACTION

Network Boundary g GBUHKK,V2

/_/i/\/

Get K | webserver 1 Webserver 2 | Put k,v2

| >

Get k Cache 1 Cache 2 Put k,v2
<k,v> <k,v2>

we N, [/

Get k Storagel | pyt k,v2

<k,v2>

—
)

o
5—3

azon
services"

CACHE SPOILER SOLUTIONS

e Segment keys into sets of keys
— Cache individual keys
— Requests are for individual keys
— Invalidation unit is for a set

—

o3
5—3

azon
services"

CACHE SPOILER SOLUTIONS

|dentifying spoiler agents

— Capture the last writer to a set — it will be the owner
— Create generations to capture last writer

— New owner removes any prior generation for a set

e Periodically

— Each cache node learns about all generations that
are valid

—
)

o
5—3

azon
services"

CACHE SPOILER IN ACTION

Network Boundary g GBHKK1, v2

I

Webserver 1 Webserver 2 Put k1,v2

| >

Put k1,v2
<k1v, gl> Cache 1 Cache 2

Valid Generations: g1 <k1,v2, g2>

\ / Valid Generations: g2

Storage 1 Put k1,v2 — from Cache?2

Set 1: { k1, k2, k3, ... },
Owner Cache2, Generation g2

—
)

o
5—3

azon
services"

CACHE SPOILER SOLUTIONS

e Validity
— All cache entities have a generation associated with
them
— All cache nodes have a set of valid generations

— Lookup for K in the cache will fail when generation
associated with K is not in valid set

—

o3
5—3

azon
services"

Resiliency Techniques

e Caching at Scale

e Adaptive Consistency

e Service Protection

Resiliency Technique - Adaptive

Consistency

e Flash Crowds
— Surge in a request for a very small set of resources

— Worst case scenario is for a single entity within your
system

— These are valid use cases

—
)

o
5—3

azon
services"

FLASH CROWDS IN ACTION

vemorsniry @ O O O D DD O D

Webserver 1

Webserver 2

Webserver 3

Webserver 4

Cache 1

Storage 1

~\

Cache 2

Storage 2

\

Webserver N

Cache C

Storage 3

Storage S

1L

P
A gamazon
¥ webservices"

RESILIENCY TECHNIQUE - ADAPTIVE CONSISTENCY

e Trade off consistency to maintain availability
e Cache at the Webserver layer

e |f done incorrectly can result in a see-saw effect

e Back channel communications to caching fleet
— Knows about shielding being done
— Knows “effective” request rate

— Canincorporate information to know whether or not
it would be overloaded if shielding weren’t done

—

o3
5—3

azon
services"

RESILIENCY TECHNIQUE - ADAPTIVE CONSISTENCY

vemorsniry @ O O O D DD O S

—————”’—_—___—“‘\\\f\\\-- L Get k

Webserver 1 Webserver 2 Webserver 3 Webserver 4 Webserver N
<k, v> <k, v> <k, v> <k, v> <k, v>

e@et K
iSlletie\ & Kk Get K
Overloatk tru Resplt:Stkelged: 85
Resulig 614G 0otesS\100 Overload: false
Overload: true
ShieldGoodness: 100

Heavy Hitters:

Result: <k, v>
Overload: true
ShieldGoodness: 100

Cache 2

k, BA0GO _
_ Nunn

A amazon

i webservices"

Resiliency Techniques

e Caching at Scale
e Adaptive Consistency

e Service Protection

RESILIENCY TECHNIQUE — SERVICE PROTECTION

e When possible do something smart to absorb
and handle incoming requests

e As a last resort every single service must
protect itself from an overwhelming load from
an upstream service

e Goalisto shed load
— Early
— Fairly

LOAD SHEDDING

e Two standard techniques
— Strict resource allocation
— Adaptive

—

o3
5—3

azon
services"

LOAD SHEDDING — RESOURCE ALLOCATION

e Hand out resource credits

e Ensure credits never exceed capacity of the
service

e Replace credits over time

e Number of credits for client can grow or shrink
over time

LOAD SHEDDING — RESOURCE ALLOCATION

e Positives
— Ensures that all work done by a machine is useful work
— Tight guarantees on response time

e Negatives
— Tight coupling between client and server
— Work for all APIs must be comparable

— Capacity of server must be a fixed limit and computed
ahead of time

e Independent of execution order of APIs
e Specific costs of APls
e Must be constantly changed

—
)

o
5—3

azon
services"

LOAD SHEDDING — ADAPTIVE

e Recognize when you cannot satisfy callers
request and shed

e Callers can assign to each request
— Priority
— Time willing to wait

e Shed load when

— Accepting request would cause process or machine
to fail

— Reasonably certain that you wouldn’t be able to
satisfy caller’s requirements

—
)

azon
services"

o
5—3

LOAD SHEDDING — ADAPTIVE

e Probabilistically shed load based on the priority
of the request and how overloaded the server is

— |f effective load is 2x what a server can handle then
shed 50%

— |f effective load is 1000x what a server can handle
then shed 99.9%

e Avoid feedback loops
— Clients react to shedding
— Create surges of over/under max capacity

—

o3
5—3

azon
services"

LOAD SHEDDING — ADAPTIVE

e Positives
— Works in almost all situations
— Allows for explicit priority of requests
e Negatives
— Work must still be done on the server to shed load
— Cannot stop oscillations

—
)

o
5—3

azon
services"

CONCLUSION

e Colleague remarked “Isn’t this just about making a
cache?”
— A simple cache at scale is hard to do
e Billions of objects
e High cache hit rate

— Making intelligent and adaptive choices about when to
cache

— Finally, the steps that you have to take to protect the cache

—
)

o
5—3

azon
services"

CONCLUSION

e Reacting to massive load is a hard problem

e Three techniques
— Incorporating caching at scale
— Adaptive consistency
— Service protection

e Amazon AWS is hiring: http://aws.amazon.com/jobs

—
)

o
5—3

azon
services"

http://aws.amazon.com/jobs

QUESTIONS?

	Amazon S3: Architecting for Resiliency in the Face of Massive Load
	Setting the Stage
	Setting the Stage
	Availability is critical
	Key Takeaways
	Outline
	Amazon S3
	Presenting the Problem
	A Simple Architecture
	A Simple Architecture
	A Simple Architecture
	Core Problems
	Illustrating the Core Problems
	Massive Load
	Hotspot Management - Fallacies
	Hotspot Management - Fallacies
	Hotspot Management - Fallacies
	Simplified S3 Architecture
	Simplified S3 Architecture
	Resiliency Techniques
	Resiliency Technique – Caching at Scale
	Resiliency Technique – Caching at Scale
	Resiliency Technique – Caching at Scale
	Resiliency Technique – Caching at Scale
	Resiliency Technique – Caching at Scale
	Cache Spoiler in Action
	Cache Spoiler Solutions
	Cache Spoiler Solutions
	Cache Spoiler in Action
	Cache Spoiler Solutions
	Resiliency Techniques
	Resiliency Technique - Adaptive Consistency
	Flash Crowds in Action
	Resiliency Technique - Adaptive Consistency
	Resiliency Technique - Adaptive Consistency
	Resiliency Techniques
	Resiliency Technique – Service Protection
	Load Shedding
	Load Shedding – Resource Allocation
	Load Shedding – Resource Allocation
	Load Shedding – Adaptive
	Load Shedding – Adaptive
	Load Shedding – Adaptive
	Conclusion
	Conclusion
	Questions?

