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SETTING THE STAGE

e Architecting for Resiliency in the Face of Massive
Load
— Resiliency -> High availability
— Massive load
1. Many requests
2. Suddenly and with little or no warning
3. Request patterns differ from the norm
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SETTING THE STAGE
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AVAILABILITY IS CRITICAL

e Customers
— Don’t care if you are a victim of your own success
— Expect proper architecture

e The more successful you are

— The harder this problem becomes
— The more important properly handling becomes

e Features
— Availability
— Durability
— Scalability
— Performance e
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KEY TAKEAWAYS

e This Is a hard problem
e Many techniques exist
» A successful service has to solve this problem



OUTLINE

e Amazon Simple Storage Service (S3)
e Presenting the problem

e Three techniques
— Incorporating caching at scale
— Adaptive consistency to handle flash crowds
— Service protection

e Conclusion
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AMAZON S3

e Simple storage service

e Launched: March 14, 2006

e Simple key/value storage system

e Core tenets: simple, durable, secure, available

e Financial guarantee of availability
— Amazon S3 has to be above 99.9% available

e Eventually consistent



PRESENTING THE PROBLEM

e None of this is unique to S3

e Super simple architecture

e Natural evolution to handle scale

e The core problem in all distributed systems



A SIMPLE ARCHITECTURE
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A SIMPLE ARCHITECTURE
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A SIMPLE ARCHITECTURE
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CORE PROBLEMS

e Weaknesses with simple architecture

— Not cost effective

— Correlation in customer requests to machine
resources creates hotspots

— A single machine hotspot can take down the entire
service

e Even when a request need not use that machine!
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ILLUSTRATING THE CORE PROBLEMS
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MASSIVE LOAD

e Massive load characteristics

— Large, unexpected, request pattern differs
e Capacity planning is a different problem
e Massive load manifests itself as hotspots
e Can’t you avoid hotspots with the right design?



HOTSPOT MANAGEMENT - FALLACIES

e Fallacy: When a fleet is stateless then you don’t
have to worry

— Consider webservers and load balancers
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HOTSPOT MANAGEMENT - FALLACIES

e Fallacy: You only have to worry about the
customer objects which grow the fastest
— S3 object growth is the fastest
— S3 buckets grow slowly
— But bucket information is accessed for all requests
— Buckets become hotspots

e Don’t conflate orders of growth with hotspots
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HOTSPOT MANAGEMENT - FALLACIES

e Fallacy: Hash distribution of resources solves all
hotspot problems

— Great job of distributing even the most granular unit
accessed by the system

— Problem is the most granular unit can become
popular
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SIMPLIFIED S3 ARCHITECTURE
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SIMPLIFIED S3 ARCHITECTURE
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Resiliency Techniques

e Caching at Scale
e Adaptive Consistency
e Service Protection



RESILIENCY TECHNIQUE — CACHING AT SCALE

e Architecture on prior slide creates hotspots

e |ntroduce a cache to avoid hitting the storage
nodes

— Requests can be handled higher up in the stack
— Serviced out of memory

e Cache increases availability

— Negative impact on consistency
— Standard CAP stuff
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RESILIENCY TECHNIQUE — CACHING AT SCALE

e Caching is all about the cache hit rate

e At scale a cache must contend with:
— Working set size and the long tail
— Cache invalidation techniques
— Memory overhead per cache entity
— Management overhead per cache entity
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RESILIENCY TECHNIQUE — CACHING AT SCALE

e Naive techniques won’t work
e Caching via distributed hash tables

— Primary advantages: distribution of requests to
cache nodes can use different dimensions of
iIncoming request to route
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RESILIENCY TECHNIQUE — CACHING AT SCALE
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RESILIENCY TECHNIQUE — CACHING AT SCALE

e Mitigate the impact on consistency

e Cache Spoilers
— Ruins cached value on a node
— Caused by
e Fleet membership inconsistencies
e Network unreachability

e [nability to communicate with proper machine
due to transient machine failures
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CACHE SPOILER IN ACTION
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CACHE SPOILER SOLUTIONS

e Segment keys into sets of keys
— Cache individual keys
— Requests are for individual keys
— Invalidation unit is for a set
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CACHE SPOILER SOLUTIONS

|dentifying spoiler agents

— Capture the last writer to a set — it will be the owner
— Create generations to capture last writer

— New owner removes any prior generation for a set

e Periodically

— Each cache node learns about all generations that
are valid
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CACHE SPOILER IN ACTION
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CACHE SPOILER SOLUTIONS

e Validity
— All cache entities have a generation associated with
them
— All cache nodes have a set of valid generations

— Lookup for K in the cache will fail when generation
associated with K is not in valid set
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Resiliency Techniques

e Caching at Scale

e Adaptive Consistency

e Service Protection



Resiliency Technique - Adaptive

Consistency

e Flash Crowds
— Surge in a request for a very small set of resources

— Worst case scenario is for a single entity within your
system

— These are valid use cases
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FLASH CROWDS IN ACTION
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RESILIENCY TECHNIQUE - ADAPTIVE CONSISTENCY

e Trade off consistency to maintain availability
e Cache at the Webserver layer

e |f done incorrectly can result in a see-saw effect

e Back channel communications to caching fleet
— Knows about shielding being done
— Knows “effective” request rate

— Canincorporate information to know whether or not
it would be overloaded if shielding weren’t done
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RESILIENCY TECHNIQUE - ADAPTIVE CONSISTENCY
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Resiliency Techniques

e Caching at Scale
e Adaptive Consistency

e Service Protection



RESILIENCY TECHNIQUE — SERVICE PROTECTION

e When possible do something smart to absorb
and handle incoming requests

e As a last resort every single service must
protect itself from an overwhelming load from
an upstream service

e Goalisto shed load
— Early
— Fairly



LOAD SHEDDING

e Two standard techniques
— Strict resource allocation
— Adaptive

—
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LOAD SHEDDING — RESOURCE ALLOCATION

e Hand out resource credits

e Ensure credits never exceed capacity of the
service

e Replace credits over time

e Number of credits for client can grow or shrink
over time



LOAD SHEDDING — RESOURCE ALLOCATION

e Positives
— Ensures that all work done by a machine is useful work
— Tight guarantees on response time

e Negatives
— Tight coupling between client and server
— Work for all APIs must be comparable

— Capacity of server must be a fixed limit and computed
ahead of time

e Independent of execution order of APIs
e Specific costs of APls
e Must be constantly changed
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LOAD SHEDDING — ADAPTIVE

e Recognize when you cannot satisfy callers
request and shed

e Callers can assign to each request
— Priority
— Time willing to wait

e Shed load when

— Accepting request would cause process or machine
to fail

— Reasonably certain that you wouldn’t be able to
satisfy caller’s requirements

—
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LOAD SHEDDING — ADAPTIVE

e Probabilistically shed load based on the priority
of the request and how overloaded the server is

— |f effective load is 2x what a server can handle then
shed 50%

— |f effective load is 1000x what a server can handle
then shed 99.9%

e Avoid feedback loops
— Clients react to shedding
— Create surges of over/under max capacity

—
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LOAD SHEDDING — ADAPTIVE

e Positives
— Works in almost all situations
— Allows for explicit priority of requests
e Negatives
— Work must still be done on the server to shed load
— Cannot stop oscillations
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CONCLUSION

e Colleague remarked “Isn’t this just about making a
cache?”
— A simple cache at scale is hard to do
e Billions of objects
e High cache hit rate

— Making intelligent and adaptive choices about when to
cache

— Finally, the steps that you have to take to protect the cache
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CONCLUSION

e Reacting to massive load is a hard problem

e Three techniques
— Incorporating caching at scale
— Adaptive consistency
— Service protection

e Amazon AWS is hiring: http://aws.amazon.com/jobs
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http://aws.amazon.com/jobs

QUESTIONS?
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