Dataflow Programming: a scalable data-centric approach to parallelism

EMBEDDABLE DATA MANAGEMENT AND AGILE INTEGRATION

Agenda

- Background
- Dataflow Overview
 - Introduction
 - Design patterns
 - Dataflow and actors
- DataRush Introduction
 - Composition and execution models
 - Benchmarks

Background

- Work on DataRush platform
 - Dataflow based engine
 - Scalable, high throughput data processing
 - Focus on data preparation and deep analytics
- Pervasive Software
 - Mature software company focused on embedded data management and integration
 - Located in Austin, TX
 - Thousands of customers worldwide

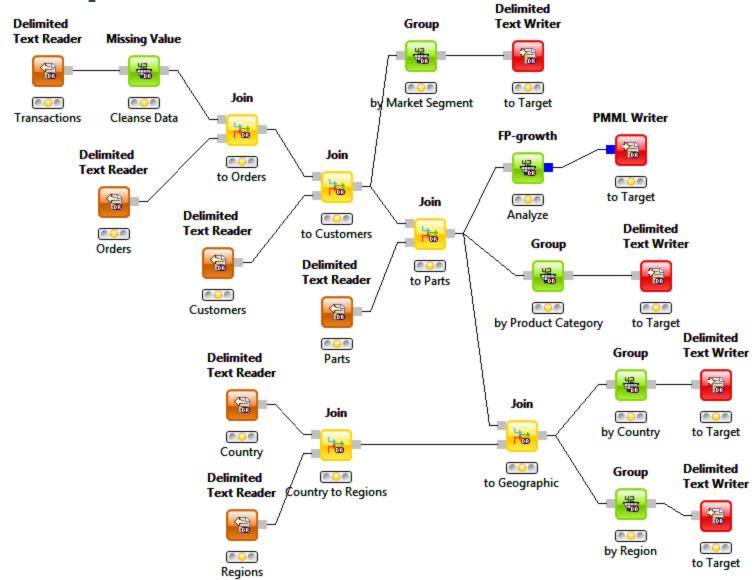
H/W support for parallelism

- Instruction level
- Multicore (process, thread)
- Multicore + I/O (compute and data)
- Virtualization (concurrency)
- Multi-node (clusters)
- Massively multi-node (datacenter as a computer)

Dataflow is

- Based on operators that provide a specific function (nodes)
- Data queues (edges) connecting operators
- Composition of directed, acyclic graphs (DAG)
 - Operators connected via queues
 - A graph instance represents a "program" or "application"
- Flow control
- Scheduling to prevent dead locks
- Focused on data parallelism

Example



Dataflow goodness

- Concepts are easy to grasp
- Abstracts parallelism details
- Simple to express
 - Composition based
- Shared nothing, message passing
 - Simplified programming model
- Immutability of flows
- Limits side effects
- Functional style

Dataflow and big data

- Pipelining
 - Pipeline task based parallelism
 - Overlap I/O and computation
 - Can help optimize processor cache
 - Whole application approach
- Data scalable
 - Virtually unlimited data size capacity
 - Supports iterative data access
- Exploits multicore
 - Scalable
 - High data throughput
- Extendible to multi-node

Parallel design patterns

- Embarrassingly parallel
- Replicable
- Pipeline
- Divide and conquer
- Recursive data

Dataflow and actors

- Actors in the sense of Erlang & Scala
- Commonality
 - Shared nothing architecture
 - Functional style of programming
 - Easy to grasp
 - Easy to extend
 - Semantics fit well with distributed computing
 - Supports either reactor or active models

Dataflow and actors

Dataflow

- Flow control
- Static composition (binding)
- Data coherency and ordering
- Deadlock detection/handling
- Usually strongly typed
- Great for data parallelism

Actors

- Immutability not guaranteed
- Ordering not guaranteed
- Not necessarily optimized for large data flows
- Great for task parallelism

DataRush implementation

- DataRush implements dataflow
 - Based on Kahn process networks
 - Parks algorithm for deadlock detection (with patented modifications)
 - Usable by JVM-based languages (Java, Scala, JPython, JRuby, ...)
 - Dataflow engine
 - Extensive standard library of reusable operators
 - API's for composition and execution

DataRush composition

Application graph

- High level container (composition context)
- Add operators using add() method
- Compose using compile()
- Execute using run() or start()

Operator

- Lives during graph composition
- Composite in nature
- Linked using flows

Flows

- Represent data connections between operators
- Loosely typed
- Not live (no data transfer methods)

DataRush composition

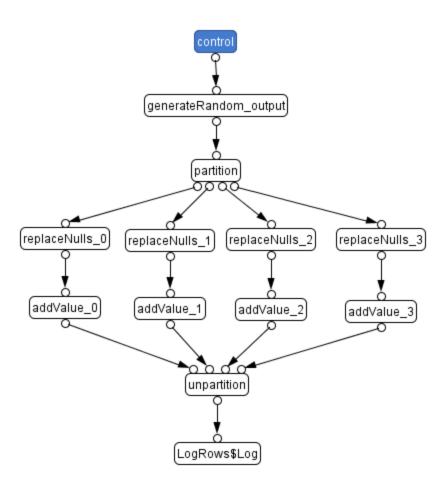
Create a new graph ApplicationGraph app = GraphFactory.newApplicationGraph(); ReadDelimitedTextProperties rdprops = ... Add file reader RecordFlow leftFlow = app.add(new ReadDelimitedText("UnitPriceSorted.txt", rdprops), "readLeft").getOutput(); Add file reader RecordFlow rightFlow = app.add(new ReadDelimitedText("UnitSalesSorted.txt", rdprops), "readRight").getOutput(); Add a join operator String[] keyNames = { "PRODUCT ID", "CHANNEL NAME" }; RecordFlow joinedFlow = app.add(new JoinSortedRows(leftFlow, rightFlow, FULL OUTER, keyNames)).getOutput(); Add a file writer app.add(new WriteDelimitedText(joinedFlow, "output.txt", WriteMode.OVERWRITE(), "write"); Synchronously run the graph

Data partitioning

- Partitioners
 - Round robin
 - Hash
 - Event
 - Range
- Un-partitioners
 - Round robin (ordered)
 - Merge (unordered)
- Scenarios
 - Scatter
 - Scatter-gather combined
 - Gather
 - For each (pipeline)


```
ApplicationGraph q = GraphFactory.newApplicationGraph("applyFunction");
                                                                    Generate data
GenerateRandomProperties props = new GenerateRandomProperties (22295, 0.25);
ScalarFlow data = q.add(new GenerateRandom(TokenTypeConstant. DOUBLE, 1000000,
   props).getOutput();
                                 Partition the data using round robin
ScalarFlow result = partition(g, data, PartitionSchemes.rr(4), new ScalarPipeline() {
    @Override
   public ScalarFlow composePipeline (CompositionContext ctx, ScalarFlow flow,
                   PartitionInstanceInfo partInfo) {
                                                        Compose partitioned pipeline
       int partID = partInfo.getPartitionID();
       ScalarFlow output = ctx.add(
              new ReplaceNulls(ctx, flow, 0.0D), "replaceNulls " + partID).getOutput();
        return ctx.add(
             new AddValue(ctx, output, 3.141D), "addValue " + partID).getOutput();
});
                               Each partitions flow will be round robin unpartitioned
g.add(new LogRows(result));
q.run();
                             Use the results
```

Partitioning data – resultant graph



DataRush execution

Process

- Worker function
- Executes at runtime
- Active actor (backed by thread)

Queues

- Data transfer channel
- Single writer, multiple reader

Ports

- End points of queues
- Strongly typed
- Scalar Java types
- Record (composite) type

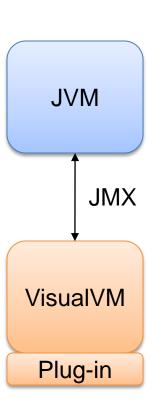
DataRush execution

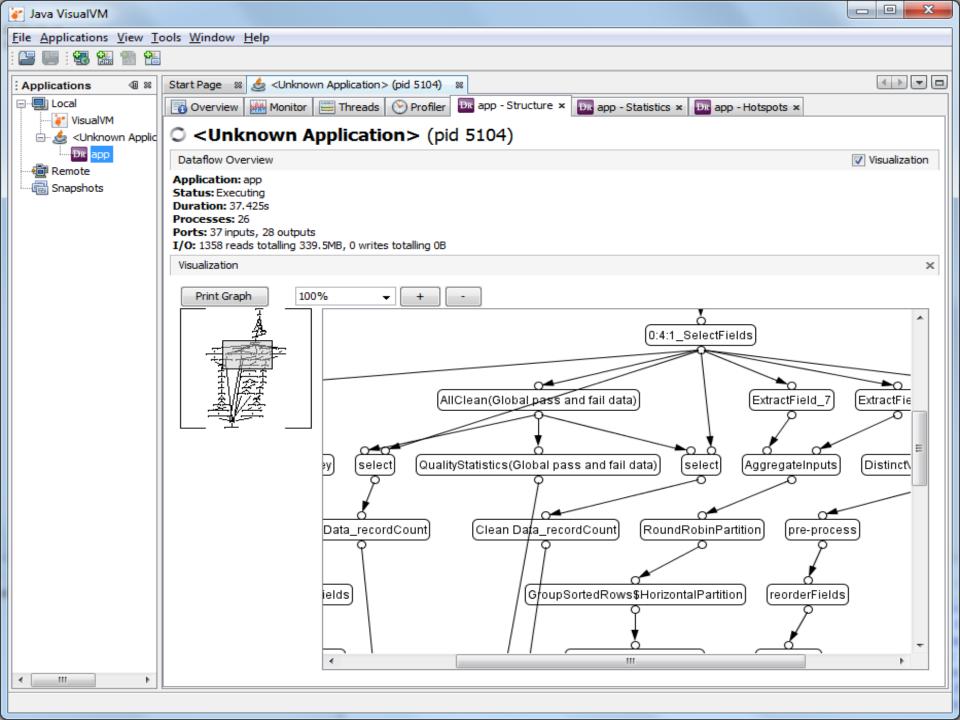
- No feedback loops
- Data iteration is supported
- Sub-graphs supported (running a graph from a graph)
- Execution Steps
 - Composition invoked
 - Flows are realized as queues
 - Ports exposed on queues to processes
 - Processes are instantiated
 - Threads created for processes and started
 - Deadlock monitoring
 - Stats exposed via JMX and Mbeans
 - Cleanup

Process example Extends DataflowProcess public class IsNullProcess extends DataflowProcess { private final GenericInput input; **Declares ports** private final BooleanOutput output; public IsNotNull(CompositionContext ctx, RecordFlow input) { super(ctx); Instantiates ports this.input = newInput(input); this.output = newBooleanOutput(); public ScalarFlow getOutput() { Accessor for output port return getFlow(output); Execution method: public void execute() { while (input.stepNext()) { Steps input output.push(input.isNull()); Pushes to output Closes output output.pushEndOfData();

Profiling

- Run-time statistics
 - Collected on graphs, queues and processes
 - Exposed via JMX
 - Serializable for post-execution viewing
- Extending VisualVM
 - Graphical JMX Console ships with the JDK
 - DataRush plug-in
 - Connect to running VM
 - Dynamically view stats
 - Look for hotspots
 - Take snapshots
 - Statically view serialized snapshot







DataRush operator libraries

- Data preparation
 - Core: sort, join, aggregate, transform, ...
 - Data profiling
 - Fuzzy matching
 - Cleansing
- Analytics
 - Cluster
 - Classify
 - Collaborative filtering
 - Feature selection
 - Linear regression
 - Association rules
 - PMML support

Malstone* B-10 benchmark

- 10 billions rows of web log data
- Nearly 1 Terabyte of data
- Aggregate site intrusion information

DataRush

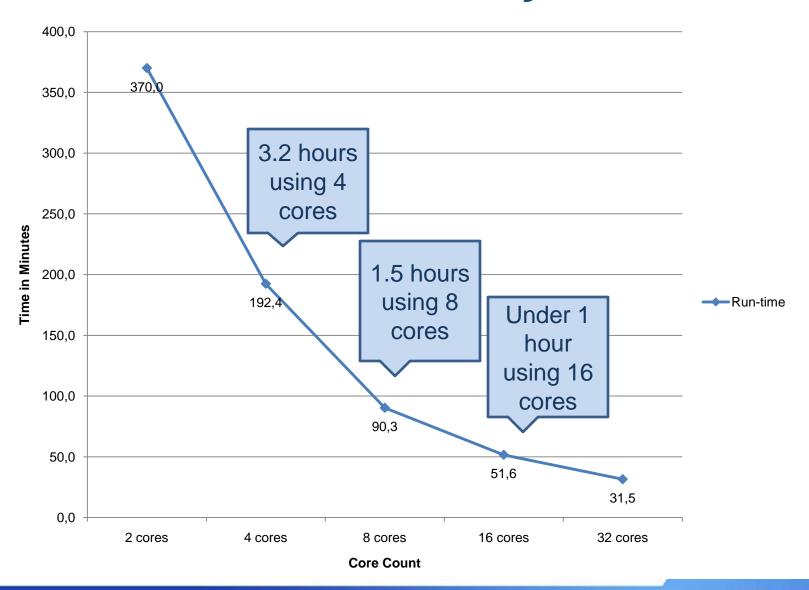
- Configuration
 - Single machine using 4 Intel
 7500 processors
 - 32 cores total
 - RAID-0 disk array
 - DataRush + JVM installed
- Results
 - 31.5 minutes
 - Nearly 2 TB/hr throughput

Hadoop (Map-Reduce)

- Configuration
 - 20 node cluster
 - 4-cores per node
 - Hadoop + JVM installed
 - Run by third-party
- Results
 - 14 hours

^{*}www.opencloudconsortium.org/benchmarks

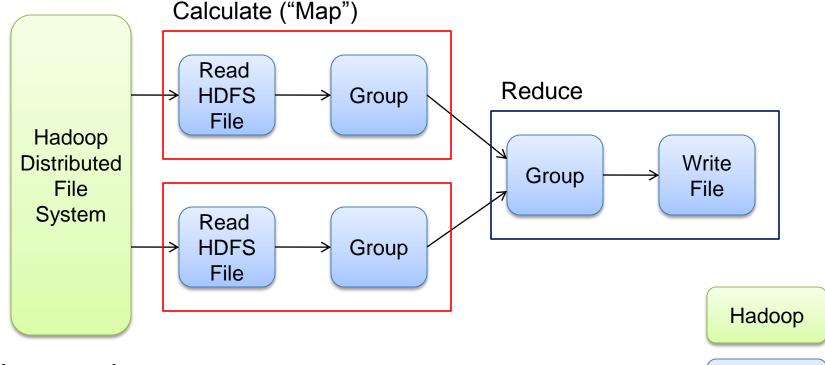
Malstone-B10 Scalability



Multi-node DataRush

- Extending dataflow to multi-node
 - Execute distributed graph fragments
 - Fragments linked via socket-based queues
 - Used distributed application graph
- Specific patterns supported
 - Scatter
 - Gather
 - Scatter-gather combined
- Available in DataRush 5 (Dec 2010)

Multi-node DataRush example



- Uses gather pattern
- Reads file containing text from HDFS
- Groups by field "state" to count instances
- Groups by "state" to sum counts

DataRush

Summary

Dataflow

- Software architecture based on continuous functions connected via data flows
- Data focused
- Easy to grasp and simple to express
- Simple programming model
- Utilizes multicore, extendible to multi-node

DataRush

- Dataflow based platform
- Extensive operator library
- Easy to extend
- Scales up well with multicore
- High throughput rates