
RESTful SOA in the real world

Sastry Malladi

Distinguished Architect.Distinguished Architect.

eBay, Inc.

Agenda

• Putting SOA and REST in perspective

• Case study : RESTful SOA at eBay

• Patterns for REST URL mapping of SOA services

• Demo

• Summary

2

• Summary

Putting SOA and REST in perspective

• SOA is an architectural style and SOA services can be accessed in multiple
ways

• SOA services can be accessed either via WS-* style or via REST style
– WS-* style here just refers to SOAP and bare minimum WS-* stuff that is required

• They aren’t mutually exclusive

• They both have their respective use cases• They both have their respective use cases
– A thick programmatic client with lots of auto-generated tooling

– A browser based or thin HTTP client

• It is not desirable to implement the same business logic twice – once for
WS style access and once for REST style access

• Note that we are not talking about Service Orientation Vs Resource
Orientation - Topic is about giving RESTful access to SOA Services

• So how do you build such SOA services ?

3

SOA

SOA is an architecture to move
from brittle, hardwired,
application silos that inhibit
change…

SOA is an Architecture evolution, not a Technology revolution

4

… to shared, reusable,
business and application
services…

… which eliminates application
redundancy and complexity, and
enable Business Agility,
Innovation and Operational
Excellence.

RESTful SOA

REST
• Resource oriented

• Resources are uniformly
represented through a URI (name
and a location)

• Interactions with the resource are
stateless

RESTFul SOA
• Interacting and manipulating

resources backed by a SOA service,
typically through a mapping layer

• It is not direct resource manipulation,
but resource manipulation through
SOA service operations

stateless

• Maps to HTTP GET, POST. PUT
and DELETE verbs on the resource.

• Different resource representations :
XML, RSS, Atom, JSON, ..

• Security : At the transport level, not
message level (e.g OAuth for
authorization)

SOA service operations

• As such, if the service interface is not
appropriately modeled, accessing
through REST style isn’t going to be
pretty

• Different output data formats : XML,
RSS, Atom, JSON, ..

• Security : At the transport level (e.g.
OAuth for authorization)

5

Numerous industry perspectives on REST

• How should a RESTful service be described ?
– Just text documentation - consumable by humans only (i.e., not tools)

– WADL - (Web Application Description Language) – How many description languages does
the consumer need to use for the same service ?

– Use WSDL itself - HTTP bindings in WSDL and use appropriate tooling to generate code.

• Real world industry trends
– Same service accessed by many protocols, data formats, styles (browser, programs)

– Reduced investments (development costs - productivity, better performance and scalability)

– Enterprises typically have existing services, everything is not re-built from ground up – Need
a way to leverage that.

– Don't necessarily care about religious arguments about what is REST and what is not. “Just
give me the data I want in the format I want using a standard protocol”

• WADL Vs WSDL
– Request/responses are both described in schema

– WADL is resource centric, WSDL is service centric

– Security etc, is not covered in WADL, but on the other hand, WSDL is more complex

6

WADL

<application xmlns:xsi="http://www.w3.org/2001/XMLS chema-instance"

<resources base="http://www.somecompany.com/mySearc hService/V1/">
<resource path=“ itemSearch ">

<method name=" GET" id="search">
<request>

<param name=“keyword" type="xsd:string"
style="query“ required="true"/>

…

7

</request>

<response status="200">
<representation mediaType="application/json"

element=“tns:ResultSet"/>
</response>
….

</method>
</resource>

</resources>

WSDL 2.0 HTTP binding

<description …

<types ../>

<interface … />

<binding name=“mySearchServiceHttpBinding"

interface="tns:mySearchServiceInterface"

type= http://www.w3.org/ns/wsdl/http whttp:methodDefault="GET ">

8

<operation ref="tns:searchOperation"

whttp:location=“ itemSearch /

whttp:method=GET"

whttp:inputSerialization=“XML”

whttp:outputSerialization=“JSON”/>

</binding>

<service … />

</description >

Security - Typical scenarios

• Browser
– For anyone registering, issue a Access Key and Access Secret.

– When connecting to a REST URL in the browser, specify two query parameters.

• the access key, and two a signature – which is calculated using Access Secret of the
message.

• On the server side, the Access Secret corresponding to Access Key is retrieved, the
signature is calculated and compared

• Application
– While invoking REST URL specify a “redirect URL” query parameter

– On the server backend, user is redirected to a sign-in page, and upon successful
login, redirect back to the user specified redirect-URL passing in a “verification
string” and a security server URL

– The application then invokes a security server URL passing the verification string,
and get back an OAuth access token.

– Then simply make subsequent REST calls with the OAuth access token in query
parameters.

9

Case Study : Restful SOA @eBay

• Built a highly optimized SOA framework (Service Container) that
– Allows description of the service using WSDL

• SOAP as well as Http/REST bindings

– Implement the service (business logic) once

– Generate code for programmatic access via SOAP or HTTP/REST

– Generate REST URL mapping for direct browser access– Generate REST URL mapping for direct browser access

– Out of the box support for JSON, NV, XML, RSS, ATOM

– Low latency and overhead (total overhead under 5ms)

– Local binding (deployment time option)

– Integrated and built-in monitoring

– Policy based resource modeling and protection (Authn, AuthZ,
RL)

– Service and consumer decoupling via ESB

– Integrated tooling - Developer and operational

10

Pipeline architecture – Service Container

Reads

Logging handler

Auth handler

G11N

Global &

Service

Specific

Config files

R
e

q
u

e
st

/r
e

sp
o

n
se

11

Server

Message

Processor

In Pipeline

Reads

Request
Disp

ServiceImpl

Out pipeline

MCtx

Resp
disp

2

3

4
5

6

7

8

Protocol specific
(e.g SOAP) processors

Transport

(de)serialization happens
here if not already done

R
e

q
u

e
st

/r
e

sp
o

n
se

M
a

p
p

in
g

 la
ye

r

1

9

Patterns for REST URL mapping

• Mapping natively at Service Container level with the combination of WSDL
HTTP bindings

– Config options for request parameters and headers

• Mapping at a layer in front of the Service Container layer (e.g ESB)
– For both request mapping and response transformations

• Combination of the above two
– Basic mapping at Service Container layer

– Additional mappings at ESB tier, including output transformations (Atom, RSS, ..)

• Through Atom Adaptor services

• Considerations
– Rate Limiting (Traffic control and throttling)

– Security (authentication)

– Monitoring

– Resource versioning

12

Mapping layer at Service Container level

REST access

Service container

Browser and
non browser
clients

R
e

q
u

e
st

/R
e

sp
o

n
se

M
a

p
p

in
g

 la
ye

r

M
e

ss
a

g
e

 p
ro

ce
ss

in
g

13

SOAP accessNon-browser
clients

Service

R
e

q
u

e
st

/R
e

sp
o

n
se

M
a

p
p

in
g

 la
ye

r

M
e

ss
a

g
e

 p
ro

ce
ss

in
g

la
ye

rs

Infra Services

Mapping at Service container level : Service config file
snippet

<provider-options>

<header-mapping-options>
<option name= "X-EBAY-SOA-OPERATION-NAME">path[2]</option>
<option name= "X-EBAY-SOA-RESPONSE-DATA-FORMAT">query[format]</option>

</header-mapping-options>

<operation-mapping-options>
<operation name= “getCatalog" >browse</operation>
<operation name= “updateCatalog" >update</operation

</operation - mapping - options>

14

</operation - mapping - options>

<request-params-mapping>
<operation name= “getCatalog" >

<option name= “catalogID" >path[3]</option>
</operation>

</request-params-mapping >

</provider-options>

• http://host:port/CatalogService/ browse/books
• http://host:port/CatalogService/ browse/books?format=json

Mapping at a layer in front of Service Container (e .g.
ESB)

REST access

Service container

Browser and
non browser
clients

O
p

tio
n

a
l a

d
d

iti
o

n
a

l

M
e

ss
a

g
e

 p
ro

ce
ss

in
g

E
S

B
(M

a
p

p
in

g
 la

ye
r)

15

SOAP accessNon-browser
clients

Service

O
p

tio
n

a
l a

d
d

iti
o

n
a

l
M

a
p

p
in

g

M
e

ss
a

g
e

 p
ro

ce
ss

in
g

la
ye

rs

Infra Services

E
S

B
(M

a
p

p
in

g
 la

ye
r)

ESB tier

S1

S2

Clients

Browser

Logical LB

Service EP

Services

Routing
REST mapping
Output transformation

16

S2

S3
Thick
clients

ESB

Rest EP

S4

Output transformation
Atom/RSS

Mapping at an ESB tier : Configuration file snippet

<mapping xmlns = "http://www.ebay.com/soa/">
<url-mapping url = “catalogsvc/browse/">

<request-params-mapping service = “CatalogService” >
<operation name=“getCatalog" request=“getCatalogReq uest" >

<option name=“catalogID”>path[2] </option>
<option name=”Version” alias=“ Ver ” style=“query”

• No WSDL Request/Response structure knowledge at ESB tier
• Mapping is dynamic and context sensitive (i.e, not a static 1:1 mapping)
• Reserved path elements and parameters (e.g Version)

17

<option name=”Version” alias=“ Ver ” style=“query”
default=”V1”
optional=”true” >path[3] </option>

</operation>
</url-mapping>

</mapping>

• http://host:port/CatalogService/ browse/books

• http://host:port/CatalogService/ browse/books?Ver=V2

• http://host:port/CatalogService/ browse/books/V2
• http://host:port/CatalogService/ browse/books?format=json

Mapping through an Atom Adaptor

REST access

Service container

Browser and
non browser
clients

A
to

m
S

e
rv

e
r

se
rv

le
t

Atom
Adaptor
service

18

SOAP accessNon-browser
clients

Business
Service

Infra Services

A
to

m
S

e
rv

e
r

se
rv

le
t

Mapping through Atom Adaptor services – Details

Locally bound

SOA business

services
Atom Adaptor

Service

Browser or

Atom/REST

clients

External or internal SOA

clients

Service container

GET
POST
PUT
DELETE

19

(many operations)

Op1, Op2, Op3,

Op4, …

(one operation)

processAtom(A

tomDescriptor desc)

AtomServer

Equivalent
CRUD opsGET

POST

Demo

• Basic SOA service creation – CatalogService – getCatalog, updateCatalog

• Client creation

• Invoke in local mode and remote binding mode, basically programmatic
SOAP

• Invoke in browser - change data formats
– Define header path mapping for JSON, NV– Define header path mapping for JSON, NV

– demo GET/POST

20

Summary

• SOA is an Architectural style and principles and doesn’t conflict or
contradict REST approach – They are complimentary

• Restful access to SOA service is about giving Resource oriented
access to the data behind the SOA service, and is not necessarily
about changing service orientation to resource orientation

• There are multiple approaches to describing REST access to a

21

• There are multiple approaches to describing REST access to a
service, but the approach that eBay followed is a combination of
using the WSDL HTTP bindings and a URL mapping layer

• There are multiple patterns for REST URL mapping to SOA services
and typically a combination of those patterns is always used

• It is desirable to implement a business service once, but give both
SOAP and REST access to the same service.

• If the SOA service in question doesn’t have a proper design and
modeling of the interface, just defining the REST URL mappings to
make it look like resource isn’t going to be pretty !

