RESTful SOA In the real world

Sastry Malladi
Distinguished Architect.

eBay, Inc.

Agenda
e

Putting SOA and REST in perspective

Case study : RESTful SOA at eBay

Patterns for REST URL mapping of SOA services

Demo

Summary

Putting SOA and REST In perspective
e

« SOA is an architectural style and SOA services can be accessed in multiple
ways

e SOA services can be accessed either via WS-* style or via REST style
— WS-* style here just refers to SOAP and bare minimum WS-* stuff that is required

e They aren’t mutually exclusive

* They both have their respective use cases
— A thick programmatic client with lots of auto-generated tooling
— A browser based or thin HTTP client

 |tis not desirable to implement the same business logic twice — once for
WS style access and once for REST style access

* Note that we are not talking about Service Orientation Vs Resource
Orientation - Topic is about giving RESTful access to SOA Services

* So how do you build such SOA services ?

SOA

- 4

SOA is an Architecture evolution, not a Technol ogy revol ution

SOA is an architecture to move
from brittle, hardwired,
application silos that inhibit
change...

... to shared, reusable,
business and application
services...

... Which eliminates application
redundancy and complexity, and
enable Business Agility,
Innovation and Operational
Excellence.

RESTful SOA
e ———

RESTFul SOA

REST

Resource oriented

Resources are uniformly
represented through a URI (name
and a location)

Interactions with the resource are
stateless

Maps to HTTP GET, POST. PUT

and DELETE verbs on the resource.

Different resource representations
XML, RSS, Atom, JSON, ..

Security : At the transport level, not
message level (e.g OAuth for
authorization)

Interacting and manipulating
resources backed by a SOA service,
typically through a mapping layer

It is not direct resource manipulation,
but resource manipulation through
SOA service operations

As such, if the service interface is not
appropriately modeled, accessing
through REST style isn’t going to be
pretty

Different output data formats : XML,
RSS, Atom, JSON, ..

Security : At the transport level (e.g.
OAuth for authorization)

Numerous industry perspectives on REST
e

« How should a RESTful service be described ?

— Just text documentation - consumable by humans only (i.e., not tools)

— WADL - (Web Application Description Language) — How many description languages does
the consumer need to use for the same service ?

— Use WSDL itself - HTTP bindings in WSDL and use appropriate tooling to generate code.

* Real world industry trends
— Same service accessed by many protocols, data formats, styles (browser, programs)
— Reduced investments (development costs - productivity, better performance and scalability)

— Enterprises typically have existing services, everything is not re-built from ground up — Need
a way to leverage that.

— Don't necessarily care about religious arguments about what is REST and what is not. “Just
give me the data | want in the format | want using a standard protocol”

- WADL Vs WSDL

— Request/responses are both described in schema
— WADL is resource centric, WSDL is service centric
— Security etc, is not covered in WADL, but on the other hand, WSDL is more complex

WADL
S —

<application xmins:xsi="http://www.w3.0rg/2001/XMLS

<resources base="http://www.somecompany.com/mySearc

<resource path=" itemSearch ">
<method name=" GET" id="search">
<request>

<param name="keyword" type="xsd:string"
style="query" required="true"/>

</request>

<response status="200">

<representation mediaType="application/json"

element="tns:ResultSet"/>
</response>

</method>
</resource>
</resources>

chema-instance"

hService/V1/">

WSDL 2.0 HTTP binding

e

<description ...
<types ../>

<interface ... />

<binding name=“mySearchServiceHttpBinding"

interface="tns:mySearchServicelnterface"
type=
<operation ref="tns:searchOperation"
whttp:location=" itemSearch /
whttp:method=GET"
whttp:inputSerialization=“"XML”
whttp:outputSerialization=“"JSON"/>
</binding>
<service ... />

</description >

whttp:methodDefault="GET

Security - Typical scenarios
e

 Browser

For anyone registering, issue a Access Key and Access Secret.
When connecting to a REST URL in the browser, specify two query parameters.

* the access key, and two a signature — which is calculated using Access Secret of the
message.

* Onthe server side, the Access Secret corresponding to Access Key is retrieved, the
signature is calculated and compared

» Application

While invoking REST URL specify a “redirect URL” query parameter

On the server backend, user is redirected to a sign-in page, and upon successful
login, redirect back to the user specified redirect-URL passing in a “verification
string” and a security server URL

The application then invokes a security server URL passing the verification string,
and get back an OAuth access token.

Then simply make subsequent REST calls with the OAuth access token in query
parameters.

Case Study : Restful SOA @eBay
e

 Built a highly optimized SOA framework (Service Container) that
— Allows description of the service using WSDL
* SOAP as well as Http/REST bindings
— Implement the service (business logic) once
— Generate code for programmatic access via SOAP or HTTP/REST
— Generate REST URL mapping for direct browser access
— Out of the box support for JISON, NV, XML, RSS, ATOM

— Low latency and overhead (total overhead under 5ms)
— Local binding (deployment time option)
— Integrated and built-in monitoring

— Policy based resource modeling and protection (Authn, AuthZ,
RL)

— Service and consumer decoupling via ESB
— Integrated tooling - Developer and operational

10

11

Pipeline architecture — Service Container
e

Request/response
Mapping layer

A

1
5r0toco| specific
(e.g SOAP) processors

Logging handler
Global &
Service Auth handler
Specific
Config files
G G1IN
| Reads
| l |
|
| D 3 T Request |
el o Disp |
| _ 1 .
In Pipel
Server lj 4 InPipeline =©_:_’_
Message |i| Out pipeline :
Processor : X :
|
T (O
I - |
: [

Resp Transport
disp

(de)serialization happens
here if not already done

Patterns for REST URL mapping
e

* Mapping natively at Service Container level with the combination of WSDL
HTTP bindings

— Config options for request parameters and headers

* Mapping at a layer in front of the Service Container layer (e.g ESB)
— For both request mapping and response transformations

« Combination of the above two
— Basic mapping at Service Container layer
— Additional mappings at ESB tier, including output transformations (Atom, RSS, ..)

e Through Atom Adaptor services

« Considerations
— Rate Limiting (Traffic control and throttling)
— Security (authentication)
— Monitoring
— Resource versioning

12

Mapping layer at Service Container level

e —

Browser and
non browser
clients

Non-browser
clients

Infra Services

Mapping at Service container level : Service config

snippet
e I

file

<provider-options>

<header-mapping-options>

<option name= "X-EBAY-SOA-OPERATION-NAME">path[2]</option>

<option name= "X-EBAY-SOA-RESPONSE-DATA-FORMAT2query[format]</option>
</header-mapping-options>

<operation-mapping-options>

<operation name= “getCatalog" >browse</operation>
<operation name= “updateCatalog" >update</operation
</operation - mapping - options>
>

</provider-options>

14

Mapping at a layer in front of Service Container (e .g.

ESB)
e —

Browser and
non browser
clients

Non-browser
clients

Infra Services

ESB tier

e

Clients

Browser

&=

Thick
clients

16

Service EP

Rest EP

Logical LB

Routing
REST mapping

Output transformation
Atom/RSS

Services

S1

S2

Mapping at an ESB tier : Configuration file snippet

e

« No WSDL Request/Response structure knowledge at ESB tier
* Mapping is dynamic and context sensitive (i.e, not a static 1:1 mapping)
* Reserved path elements and parameters (e.g Version)

<mapping xmins = "http://www.ebay.com/soa/"'>
<url-mapping url = “catalogsvc/browse/">
<request-params-mapping service = “CatalogService” >
<operation name="“getCatalog" request="getCatalogReq uest" >
<option name="“cataloglD”>path[2] </option>
<option name="Version” alias=" Ver” style=“query”
default="V1”
optional="true” >path[3] </option>
</operation>
</url-mapping>
</mapping>

. I V2

V4
17

Mapping through an Atom Adaptor
e —

Browser and
non browser
clients

Non-browser
clients

Infra Services

Mapping through Atom Adaptor services — Detalls

19

External or internal SOA

clients

Browser or
At REST . .
c|ice):;£ Service container
GET Locally bound
POST
PUT
DELETE Atom Adaptor
Service
AtomServer R (one operation) €
§ Equivalent
rocessAtom(a
GET P (a1 crRuD ops
POST tomDescriptor desc)

>

\4

SOA business
services

(many operations)

Op1, Op2, Op3,
Op4, ...

Demo
—

« Basic SOA service creation — CatalogService — getCatalog, updateCatalog
« Client creation

» Invoke in local mode and remote binding mode, basically programmatic
SOAP

* Invoke in browser - change data formats
— Define header path mapping for JSON, NV
— demo GET/POST

V4
20

Summary

e

21

SOA is an Architectural style and principles and doesn’t conflict or
contradict REST approach — They are complimentary

Restful access to SOA service is about giving Resource oriented
access to the data behind the SOA service, and is not necessarily
about changing service orientation to resource orientation

There are multiple approaches to describing REST access to a
service, but the approach that eBay followed is a combination of
using the WSDL HTTP bindings and a URL mapping layer

There are multiple patterns for REST URL mapping to SOA services
and typically a combination of those patterns is always used

It is desirable to implement a business service once, but give both
SOAP and REST access to the same service.

If the SOA service in question doesn’t have a proper design and
modeling of the interface, just defining the REST URL mappings to
make it look like resource isn’t going to be pretty !

