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Introduction
This talk isn't really about web. It's about how we model data for the web.

HTTP itself is not the interesting part of our systems. Our systems are mostly JSON over HTTP at the network boundary, nothing too clever!
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Mochi's Business
We provide platforms for Flash game developers
Ads, analytics, virtual currency, social, scores, etc.
Terabytes of data to report on
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Just a few years ago…
Millions of tuples was big
Scale up vertically
Single master SQL databases
(Still works great for most companies)
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Why was this easy?
ACID is cheap on a single node
Efficient to establish a total ordering for events
Single node systems do not have network partitions!
Most businesses can probably still get away with this
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Why does this break?
Availability is important (we're global!)
Too expensive to scale vertically
Schema evolution is hard
Sharding not always possible, and rarely fun
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Case Study: Friendwad
A social graph aggregator
MochiGames, Facebook, Twitter, Myspace (oops!)
Original implementation built on Mnesia
Mnesia causes us pain
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Friendwad Data Model
Twitter-like social digraph
Each user has a unique id
following: user ids that this user follows
followers: user ids that follow this user
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Friendwad Diagram

Alice Bob

Following

Alice Bob

Followers
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Mnesia Implementation
Table in mnesia for user records (id, following, followers)
Multi-row transaction for each graph change
At least two rows in each transaction, possibly more (third-party import)
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Why not Mnesia?
Mnesia issues beyond the scope of this talk :)
Anyway, we decided to migrate to Riak
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Riak
Great solution for many of our data problems (thanks Basho!)
Distributed eventually consistent key-value store
But not a complete solution
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Riak Migration
The simplest thing that could possibly work (incorrectly)
… appears correct with serialized glasses
Riak not transactional even for changes to a single row
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Riak Migration Continued
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Eventual Inconsistency
Popular user claimed they were missing entries in "followers"
Verified that they were missing by looking at our analytics built from our transaction logs
Especially non-transactional with allow_mult=false!
My face probably still has a palm-shaped dent
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Version Terminology
Client a reads version o (original state)
Transform from client a on o produces version ao
Think function application a(o())
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Adding a friend [1]
Original state o for alice, bob on read

id        | alice   | bob     |
followers | []      | []      |
following | []      | []      |
version   | o       | o       |
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Adding a friend [2]
Write modified bob at version ao

id        | alice   | bob     |
followers | []      | []      |
following | []      | [alice] |
version   | o       | ao      |
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Adding a friend [3]
Write modified alice at version ao

id        | alice   | bob     |
followers | [bob]   | []      |
following | []      | [alice] |
version   | ao      | ao      |
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Interleaving for Fail
To simulate failure we need multiple concurrent operations
a is alice ! bob
b is bob ! carol
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Concurrency Pains [1]
alice ! bob (a) initial state

id        | alice   | bob     | carol |
followers | []      | []      | []    |
following | []      | []      | []    |
version   | o       | o       | o     |
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Concurrency Pains [2]
bob ! carol (b) initial state (all look same!)

id        | alice   | bob     | carol |
followers | []      | []      | []    |
following | []      | []      | []    |
version   | o       | o       | o     |
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Concurrency Pains [3]
bob ! carol writes to bob

id        | alice   | bob     | carol |
followers | []      | []      | []    |
following | []      | [carol] | []    |
version   | o       | bo      | o     |
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Concurrency Pains [4]
alice ! bob writes to alice

id        | alice   | bob     | carol |
followers | []      | []      | []    |
following | [bob]   | [carol] | []    |
version   | ao      | bo      | o     |
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Concurrency Pains [5]
alice ! bob writes to bob

id        | alice   | bob     | carol |
followers | []      | [alice] | []    |
following | [bob]   | []      | []    |
version   | ao      | ao      | o     |
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Concurrency Pains [6]
bob ! carol writes to carol

id        | alice   | bob     | carol |
followers | []      | [alice] | [bob] |
following | [bob]   | []      | []    |
version   | ao      | ao      | bo    |
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FAIL
Concurrency ruins everything.

W     W      W
W        W  W     W
              '.  W
  .-""-._     \ \.--|
 /       "-..__) .-'
|     _         /
\'-.__,   .__.,'
 `'----'._\--'
VVVVVVVVVVVVVVVVVVVVV
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Sibling Rivalry
If allow_mult is on, the next read of bob will have two siblings ([ao, bo]) because they descend from the same vector clock.
Default strategy is "last write wins", also known as pain
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Simple fix?
Merging ao and bo is easy! Just union over followers and following.
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Simple fix? NOPE!
But edges are not insert-only! That ruins everything.

It's better, but any inconsistency is just pain waiting to happen.
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Fix all of the things
Turn on allow_mult=true
Implemented statebox in anger to solve the rest of the problem



11/16/11 Eventually Consistent HTTP with Statebox and Riak

32/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Statebox Design Philosophy
Adding code to Riak should be avoided (maintenance)
The only option is to resolve conflicts on read
Growth should be bounded and configurable
Doesn't need to be language agnostic
Minimize magic
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What's Statebox?
Opaque container
Serializes current state
With recent operations
Provides merge operation
Monad-like (not important)
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Statebox Terminology
op() :: N-ary function reference plus N-1 arguments
event() :: {timestamp(), op()}

{fun"ordsets:add_element/2,"[kitten]}
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Statebox Internals
Designed to be used with Erlang's external term format (term_to_binary)
Serializes function references, so is bound to exported code
Prototyped in friendwad, but immediately extracted
Open sourced because I couldn't find anything else like it



11/16/11 Eventually Consistent HTTP with Statebox and Riak

36/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Statebox Theory
Statebox algorithm can be used as-is with any eventually consistent KV store
Similar to paper on CRDT (Convergent / Commutative Replicated Data Types)
Stores current value plus a (configurably) bounded event queue
Event queue is bound by length and can expire events by age
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Declarative (ordsets)
Add#=#fun#ordsets:add_element/2,
Empty#=#statebox:new(fun#()#;>#[]#end),
A#=#statebox:modify({Add,#[a]},#Empty),
B#=#statebox:modify({Add,#[b]},#Empty),
AB#=#statebox:merge([A,#B]),
statebox:value(AB)#=:=#[a,#b].
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Composable
Empty&=&statebox_orddict:from_values([]),
Union&=&fun&statebox_orddict:f_union/2,
A&=&statebox:modify([Union(following,&[b]),
&&&&&&&&&&&&&&&&&&&&&Union(followers,&[c])],
&&&&&&&&&&&&&&&&&&&&Empty),
B&=&statebox:modify([Union(following,&[b]),
&&&&&&&&&&&&&&&&&&&&&Union(followers,&[d])],
&&&&&&&&&&&&&&&&&&&&Empty),
AB&=&statebox:merge([A,&B]),
statebox:value(AB)&=:=&[{followers,&[c,&d]},
&&&&&&&&&&&&&&&&&&&&&&&&{following,&[b]}].
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Statebox Example [1]
A"""""::"[kitten]
[{1,"Union([kitten])}]
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Statebox Example [2]
A"""""::"[kitten]
[{1,"Union([kitten])}]
"
B"""""::"[puppy]
[{2,"Union([puppy])}]
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Statebox Example [3]
A"""""::"[kitten]
[{1,"Union([kitten])}]
"
B"""""::"[puppy]
[{2,"Union([puppy])}]
"
[A,B]"::"[kitten,"puppy]
[{1,"Union([kitten])},
"{2,"Union([puppy])}]
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Statebox Merge
B is newer, so use its value as the basis
Merge sort event queues
Apply ops in order from the beginning
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Statebox Merge [1]
Use B's value (arbitrarily newest)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!![puppy]
!
Value!=![puppy]
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Statebox Merge [2]
Apply ops oldest to newest (T=1)

!!!!!!!!!!!!!!!union([kitten],![puppy])
!
Value!=![kitten,!puppy]
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Statebox Merge [3]
Apply ops oldest to newest (T=2)

union([puppy],+union([kitten],+[puppy]))
+
Value+=+[kitten,+puppy]
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statebox_riak wrapper
%%"bob"→"alice,"bob"→"carol
S"="statebox_riak:new([{riakc_pb_socket,"P},
"""""""""""""""""""""""{expire_ms,"5000},
"""""""""""""""""""""""{max_queue,"50}]),
Union"="fun"statebox_orddict:f_union/2,
statebox_riak:apply_bucket_ops(
""""<<"users">>,
""""[{[<<"alice">>,"<<"carol">>],
""""""Union(followers,"[bob])},
"""""{[<<"bob">>],
""""""Union(following,"[alice,"carol])}],
""""S).
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Restrictions
Operations must be repeatable (idempotent unary operation)
Repeatable if and only if F(V) = F(F(V))
Old operations in the queue are replayed in-order on merge, but seeded with newer data



11/16/11 Eventually Consistent HTTP with Statebox and Riak

48/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Repeatable Operations
Most set operations
Most dictionary operations
NOT most list operations (ordered lists may be ok!)
NOT most integer operations
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Non-repeatable ops?
Many can be transformed to repeatable operations
statebox_counter is one example
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statebox_counter
Represent a counter as an ordered list of events
[{{Timestamp, Ident}, Delta}]
Ident is just a unique-ish identifier (node counter, random number, etc.)
Well tested proof of concept, but not in production use
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counter optimizations
Prevent unbounded growth by coalescing old events into a single event with a fixed Ident
Events older than this are ignored
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Other statebox usage
achievements
scorewad (via recordset)
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achievements
Manages achievements earned in games
orddict of {Achievement, Timestamp}
Stores to two keys: User, User_Game
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achievements orddict
Store oldest entry for achievement.

f_store_min(Key,/New)/3>
////{fun/?MODULE:op_store_min/3,/[Key,/New]}.
/
op_store_min(Key,/New,/D)/3>
////orddict:update(
////////Key,
////////fun/(Old)/3>/min(Old,/New)/end,
////////New,
////////D).
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scorewad
Manages high score boards for > 15,000 games
Keeps top 50 scores per game for day, week, month, all time
Also stores scores per user for social leaderboards
Built recordset to migrate some of this to riak + statebox
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recordset
An optionally fixed-size ordered set of complex terms.

User defined identity
User defined sorting
Optional and efficient fixed-sizedness
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recordset example (trivial)
Empty&=&recordset:new(fun&erlang:'=:='/2,
&&&&&&&&&&&&&&&&&&&&&&fun&erlang:'<'/2,
&&&&&&&&&&&&&&&&&&&&&&[{max_size,&2}]),
Full&=&lists:foldl(fun&recordset:add/2,
&&&&&&&&&&&&&&&&&&&Empty,
&&&&&&&&&&&&&&&&&&&lists:seq(300,&400)),
[399,&400]&=:=&recordset:to_list(Full).
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What's next?
statebox already does what we want it to
More helper modules or projects will be added over time
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Better than Statebox?
We'd all be better off if this kind of data structure was built-in to the database
Higher level APIs! KV is fine but I want more from my database
Redis-like features, but concurrent and multi-node
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Why Riak could do it better
Simple clients: DB can reconcile state before return
Efficiency: Can store less data (ring state, forced serialization, vclocks)
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Questions?
Twitter: @etrepum
Mochi Media: www.mochimedia.com
Slides: etrepum.github.com/statebox_qconsf_2011
git.io/statebox
git.io/statebox_riak
git.io/recordset
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