
11/16/11 Eventually Consistent HTTP with Statebox and Riak

1/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Eventually Consistent HTTP with Statebox and Riak

Author: Bob Ippolito (@etrepum)
Date: November 2011
Venue: QCon San Francisco 2011

11/16/11 Eventually Consistent HTTP with Statebox and Riak

2/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Introduction
This talk isn't really about web. It's about how we model data for the web.

HTTP itself is not the interesting part of our systems. Our systems are mostly JSON over HTTP at the network boundary, nothing too clever!

11/16/11 Eventually Consistent HTTP with Statebox and Riak

3/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Mochi's Business
We provide platforms for Flash game developers
Ads, analytics, virtual currency, social, scores, etc.
Terabytes of data to report on

11/16/11 Eventually Consistent HTTP with Statebox and Riak

4/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Just a few years ago…
Millions of tuples was big
Scale up vertically
Single master SQL databases
(Still works great for most companies)

11/16/11 Eventually Consistent HTTP with Statebox and Riak

5/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Why was this easy?
ACID is cheap on a single node
Efficient to establish a total ordering for events
Single node systems do not have network partitions!
Most businesses can probably still get away with this

11/16/11 Eventually Consistent HTTP with Statebox and Riak

6/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Why does this break?
Availability is important (we're global!)
Too expensive to scale vertically
Schema evolution is hard
Sharding not always possible, and rarely fun

11/16/11 Eventually Consistent HTTP with Statebox and Riak

7/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Case Study: Friendwad
A social graph aggregator
MochiGames, Facebook, Twitter, Myspace (oops!)
Original implementation built on Mnesia
Mnesia causes us pain

11/16/11 Eventually Consistent HTTP with Statebox and Riak

8/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Friendwad Data Model
Twitter-like social digraph
Each user has a unique id
following: user ids that this user follows
followers: user ids that follow this user

11/16/11 Eventually Consistent HTTP with Statebox and Riak

9/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Friendwad Diagram

Alice Bob

Following

Alice Bob

Followers

11/16/11 Eventually Consistent HTTP with Statebox and Riak

10/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Mnesia Implementation
Table in mnesia for user records (id, following, followers)
Multi-row transaction for each graph change
At least two rows in each transaction, possibly more (third-party import)

11/16/11 Eventually Consistent HTTP with Statebox and Riak

11/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Why not Mnesia?
Mnesia issues beyond the scope of this talk :)
Anyway, we decided to migrate to Riak

11/16/11 Eventually Consistent HTTP with Statebox and Riak

12/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Riak
Great solution for many of our data problems (thanks Basho!)
Distributed eventually consistent key-value store
But not a complete solution

11/16/11 Eventually Consistent HTTP with Statebox and Riak

13/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Riak Migration
The simplest thing that could possibly work (incorrectly)
… appears correct with serialized glasses
Riak not transactional even for changes to a single row

11/16/11 Eventually Consistent HTTP with Statebox and Riak

14/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Riak Migration Continued

11/16/11 Eventually Consistent HTTP with Statebox and Riak

15/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Eventual Inconsistency
Popular user claimed they were missing entries in "followers"
Verified that they were missing by looking at our analytics built from our transaction logs
Especially non-transactional with allow_mult=false!
My face probably still has a palm-shaped dent

11/16/11 Eventually Consistent HTTP with Statebox and Riak

16/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Version Terminology
Client a reads version o (original state)
Transform from client a on o produces version ao
Think function application a(o())

11/16/11 Eventually Consistent HTTP with Statebox and Riak

17/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Adding a friend [1]
Original state o for alice, bob on read

id | alice | bob |
followers | [] | [] |
following | [] | [] |
version | o | o |

11/16/11 Eventually Consistent HTTP with Statebox and Riak

18/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Adding a friend [2]
Write modified bob at version ao

id | alice | bob |
followers | [] | [] |
following | [] | [alice] |
version | o | ao |

11/16/11 Eventually Consistent HTTP with Statebox and Riak

19/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Adding a friend [3]
Write modified alice at version ao

id | alice | bob |
followers | [bob] | [] |
following | [] | [alice] |
version | ao | ao |

11/16/11 Eventually Consistent HTTP with Statebox and Riak

20/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Interleaving for Fail
To simulate failure we need multiple concurrent operations
a is alice ! bob
b is bob ! carol

11/16/11 Eventually Consistent HTTP with Statebox and Riak

21/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Concurrency Pains [1]
alice ! bob (a) initial state

id | alice | bob | carol |
followers | [] | [] | [] |
following | [] | [] | [] |
version | o | o | o |

11/16/11 Eventually Consistent HTTP with Statebox and Riak

22/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Concurrency Pains [2]
bob ! carol (b) initial state (all look same!)

id | alice | bob | carol |
followers | [] | [] | [] |
following | [] | [] | [] |
version | o | o | o |

11/16/11 Eventually Consistent HTTP with Statebox and Riak

23/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Concurrency Pains [3]
bob ! carol writes to bob

id | alice | bob | carol |
followers | [] | [] | [] |
following | [] | [carol] | [] |
version | o | bo | o |

11/16/11 Eventually Consistent HTTP with Statebox and Riak

24/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Concurrency Pains [4]
alice ! bob writes to alice

id | alice | bob | carol |
followers | [] | [] | [] |
following | [bob] | [carol] | [] |
version | ao | bo | o |

11/16/11 Eventually Consistent HTTP with Statebox and Riak

25/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Concurrency Pains [5]
alice ! bob writes to bob

id | alice | bob | carol |
followers | [] | [alice] | [] |
following | [bob] | [] | [] |
version | ao | ao | o |

11/16/11 Eventually Consistent HTTP with Statebox and Riak

26/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Concurrency Pains [6]
bob ! carol writes to carol

id | alice | bob | carol |
followers | [] | [alice] | [bob] |
following | [bob] | [] | [] |
version | ao | ao | bo |

11/16/11 Eventually Consistent HTTP with Statebox and Riak

27/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

FAIL
Concurrency ruins everything.

W W W
W W W W
 '. W
 .-""-._ \ \.--|
 / "-..__) .-'
| _ /
\'-.__, .__.,'
 `'----'._\--'
VVVVVVVVVVVVVVVVVVVVV

11/16/11 Eventually Consistent HTTP with Statebox and Riak

28/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Sibling Rivalry
If allow_mult is on, the next read of bob will have two siblings ([ao, bo]) because they descend from the same vector clock.
Default strategy is "last write wins", also known as pain

11/16/11 Eventually Consistent HTTP with Statebox and Riak

29/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Simple fix?
Merging ao and bo is easy! Just union over followers and following.

11/16/11 Eventually Consistent HTTP with Statebox and Riak

30/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Simple fix? NOPE!
But edges are not insert-only! That ruins everything.

It's better, but any inconsistency is just pain waiting to happen.

11/16/11 Eventually Consistent HTTP with Statebox and Riak

31/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Fix all of the things
Turn on allow_mult=true
Implemented statebox in anger to solve the rest of the problem

11/16/11 Eventually Consistent HTTP with Statebox and Riak

32/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Statebox Design Philosophy
Adding code to Riak should be avoided (maintenance)
The only option is to resolve conflicts on read
Growth should be bounded and configurable
Doesn't need to be language agnostic
Minimize magic

11/16/11 Eventually Consistent HTTP with Statebox and Riak

33/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

What's Statebox?
Opaque container
Serializes current state
With recent operations
Provides merge operation
Monad-like (not important)

11/16/11 Eventually Consistent HTTP with Statebox and Riak

34/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Statebox Terminology
op() :: N-ary function reference plus N-1 arguments
event() :: {timestamp(), op()}

{fun"ordsets:add_element/2,"[kitten]}

11/16/11 Eventually Consistent HTTP with Statebox and Riak

35/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Statebox Internals
Designed to be used with Erlang's external term format (term_to_binary)
Serializes function references, so is bound to exported code
Prototyped in friendwad, but immediately extracted
Open sourced because I couldn't find anything else like it

11/16/11 Eventually Consistent HTTP with Statebox and Riak

36/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Statebox Theory
Statebox algorithm can be used as-is with any eventually consistent KV store
Similar to paper on CRDT (Convergent / Commutative Replicated Data Types)
Stores current value plus a (configurably) bounded event queue
Event queue is bound by length and can expire events by age

11/16/11 Eventually Consistent HTTP with Statebox and Riak

37/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Declarative (ordsets)
Add#=#fun#ordsets:add_element/2,
Empty#=#statebox:new(fun#()#;>#[]#end),
A#=#statebox:modify({Add,#[a]},#Empty),
B#=#statebox:modify({Add,#[b]},#Empty),
AB#=#statebox:merge([A,#B]),
statebox:value(AB)#=:=#[a,#b].

11/16/11 Eventually Consistent HTTP with Statebox and Riak

38/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Composable
Empty&=&statebox_orddict:from_values([]),
Union&=&fun&statebox_orddict:f_union/2,
A&=&statebox:modify([Union(following,&[b]),
&&&&&&&&&&&&&&&&&&&&&Union(followers,&[c])],
&&&&&&&&&&&&&&&&&&&&Empty),
B&=&statebox:modify([Union(following,&[b]),
&&&&&&&&&&&&&&&&&&&&&Union(followers,&[d])],
&&&&&&&&&&&&&&&&&&&&Empty),
AB&=&statebox:merge([A,&B]),
statebox:value(AB)&=:=&[{followers,&[c,&d]},
&&&&&&&&&&&&&&&&&&&&&&&&{following,&[b]}].

11/16/11 Eventually Consistent HTTP with Statebox and Riak

39/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Statebox Example [1]
A"""""::"[kitten]
[{1,"Union([kitten])}]

11/16/11 Eventually Consistent HTTP with Statebox and Riak

40/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Statebox Example [2]
A"""""::"[kitten]
[{1,"Union([kitten])}]
"
B"""""::"[puppy]
[{2,"Union([puppy])}]

11/16/11 Eventually Consistent HTTP with Statebox and Riak

41/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Statebox Example [3]
A"""""::"[kitten]
[{1,"Union([kitten])}]
"
B"""""::"[puppy]
[{2,"Union([puppy])}]
"
[A,B]"::"[kitten,"puppy]
[{1,"Union([kitten])},
"{2,"Union([puppy])}]

11/16/11 Eventually Consistent HTTP with Statebox and Riak

42/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Statebox Merge
B is newer, so use its value as the basis
Merge sort event queues
Apply ops in order from the beginning

11/16/11 Eventually Consistent HTTP with Statebox and Riak

43/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Statebox Merge [1]
Use B's value (arbitrarily newest)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!![puppy]
!
Value!=![puppy]

11/16/11 Eventually Consistent HTTP with Statebox and Riak

44/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Statebox Merge [2]
Apply ops oldest to newest (T=1)

!!!!!!!!!!!!!!!union([kitten],![puppy])
!
Value!=![kitten,!puppy]

11/16/11 Eventually Consistent HTTP with Statebox and Riak

45/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Statebox Merge [3]
Apply ops oldest to newest (T=2)

union([puppy],+union([kitten],+[puppy]))
+
Value+=+[kitten,+puppy]

11/16/11 Eventually Consistent HTTP with Statebox and Riak

46/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

statebox_riak wrapper
%%"bob"→"alice,"bob"→"carol
S"="statebox_riak:new([{riakc_pb_socket,"P},
"""""""""""""""""""""""{expire_ms,"5000},
"""""""""""""""""""""""{max_queue,"50}]),
Union"="fun"statebox_orddict:f_union/2,
statebox_riak:apply_bucket_ops(
""""<<"users">>,
""""[{[<<"alice">>,"<<"carol">>],
""""""Union(followers,"[bob])},
"""""{[<<"bob">>],
""""""Union(following,"[alice,"carol])}],
""""S).

11/16/11 Eventually Consistent HTTP with Statebox and Riak

47/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Restrictions
Operations must be repeatable (idempotent unary operation)
Repeatable if and only if F(V) = F(F(V))
Old operations in the queue are replayed in-order on merge, but seeded with newer data

11/16/11 Eventually Consistent HTTP with Statebox and Riak

48/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Repeatable Operations
Most set operations
Most dictionary operations
NOT most list operations (ordered lists may be ok!)
NOT most integer operations

11/16/11 Eventually Consistent HTTP with Statebox and Riak

49/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Non-repeatable ops?
Many can be transformed to repeatable operations
statebox_counter is one example

11/16/11 Eventually Consistent HTTP with Statebox and Riak

50/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

statebox_counter
Represent a counter as an ordered list of events
[{{Timestamp, Ident}, Delta}]
Ident is just a unique-ish identifier (node counter, random number, etc.)
Well tested proof of concept, but not in production use

11/16/11 Eventually Consistent HTTP with Statebox and Riak

51/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

counter optimizations
Prevent unbounded growth by coalescing old events into a single event with a fixed Ident
Events older than this are ignored

11/16/11 Eventually Consistent HTTP with Statebox and Riak

52/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Other statebox usage
achievements
scorewad (via recordset)

11/16/11 Eventually Consistent HTTP with Statebox and Riak

53/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

achievements
Manages achievements earned in games
orddict of {Achievement, Timestamp}
Stores to two keys: User, User_Game

11/16/11 Eventually Consistent HTTP with Statebox and Riak

54/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

achievements orddict
Store oldest entry for achievement.

f_store_min(Key,/New)/3>
////{fun/?MODULE:op_store_min/3,/[Key,/New]}.
/
op_store_min(Key,/New,/D)/3>
////orddict:update(
////////Key,
////////fun/(Old)/3>/min(Old,/New)/end,
////////New,
////////D).

11/16/11 Eventually Consistent HTTP with Statebox and Riak

55/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

scorewad
Manages high score boards for > 15,000 games
Keeps top 50 scores per game for day, week, month, all time
Also stores scores per user for social leaderboards
Built recordset to migrate some of this to riak + statebox

11/16/11 Eventually Consistent HTTP with Statebox and Riak

56/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

recordset
An optionally fixed-size ordered set of complex terms.

User defined identity
User defined sorting
Optional and efficient fixed-sizedness

11/16/11 Eventually Consistent HTTP with Statebox and Riak

57/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

recordset example (trivial)
Empty&=&recordset:new(fun&erlang:'=:='/2,
&&&&&&&&&&&&&&&&&&&&&&fun&erlang:'<'/2,
&&&&&&&&&&&&&&&&&&&&&&[{max_size,&2}]),
Full&=&lists:foldl(fun&recordset:add/2,
&&&&&&&&&&&&&&&&&&&Empty,
&&&&&&&&&&&&&&&&&&&lists:seq(300,&400)),
[399,&400]&=:=&recordset:to_list(Full).

11/16/11 Eventually Consistent HTTP with Statebox and Riak

58/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

What's next?
statebox already does what we want it to
More helper modules or projects will be added over time

11/16/11 Eventually Consistent HTTP with Statebox and Riak

59/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Better than Statebox?
We'd all be better off if this kind of data structure was built-in to the database
Higher level APIs! KV is fine but I want more from my database
Redis-like features, but concurrent and multi-node

11/16/11 Eventually Consistent HTTP with Statebox and Riak

60/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Why Riak could do it better
Simple clients: DB can reconcile state before return
Efficiency: Can store less data (ring state, forced serialization, vclocks)

11/16/11 Eventually Consistent HTTP with Statebox and Riak

61/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

Questions?
Twitter: @etrepum
Mochi Media: www.mochimedia.com
Slides: etrepum.github.com/statebox_qconsf_2011
git.io/statebox
git.io/statebox_riak
git.io/recordset

11/16/11 Eventually Consistent HTTP with Statebox and Riak

62/62file://localhost/Users/bob/src/mochi/bob/statebox_qconsf_2011-20416/slides.html

