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What is
Cloud Foundry?
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The Open
Platform as a Service

3



What is PaaS?
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Or more specifically, 
aPaaS?
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aPaaS

• Application Platform as a Service

• Applications and Services
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aPaaS

• Application Platform as a Service

• Applications and Services

• Not 
• VMs

• Memory

• Storage

• Networks

• CPU
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What is
OpenPaaS?
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OpenPaaS

• Multi-Language

• Multi-Framework

• Multi-Services

• Multi-Cloud, Multi-IaaS

• Hybrid - Public or Private or Both

• OpenSource
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OpenPaaS

• Multi-Language
• Ruby, Java, Scala, Node.js, Erlang, Python, PHP..

• Multi-Framework
• Rails, Sinatra, Spring, Grails, Express, Lift

• Multi-Services
• MySQL, Postgres, MongoDB, Redis, RabbitMQ

• Multi-Cloud, Multi-IaaS
• vSphere, MicroCloud, OpenStack,  AWS
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The Open PaaS
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What is
our Goal?
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What was our Goal?
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Raise the unit of  currency 
to be the application and 
its associated services, 

not the infrastructure



What was our Goal?
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Best of  breed delivery 
platform for all modern 

applications and 
frameworks



What was our Goal?
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Favor Choice

and

Openness



How was it Built?
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How was it Built?

• Kernel (CloudFoundry OSS)
• Core PaaS System

• Kernel and Orchestrator Shells
• Layered on top of  IaaS

• Orchestrator
• IaaS creation, management and 

orchestration

17



High Level
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IaaS

Orchestrator

CF Kernel

Hardware - CPU/Memory/Disk/Network

Clients (VMC, STS, Browser)



Basic Premises

• Fail Fast

• Self  Healing

• Horizontally Scalable Components

• Distributed State

• No Single Point of  Failure

• Should be as simple as possible 
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Basic Patterns

• Event-Driven

• Asynchronous

• Non-blocking

• Independent, Idempotent

• Message Passing

• Eventually Consistent
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Basic Design

• All components loosely coupled
• Few “Classes”, many “Instances”

• Messaging as foundation
• Addressing and Component Discovery

• Command and Control

• JSON payloads

• HTTP or File/Blob for data transport
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Kernel Components

• All dynamically discoverable

• Launch and scale in any order

• Can come and go as needed

• Monitor via HTTP and JSON

• Location independent
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Kernel Components

• Router

• CloudController

• DEA

• HealthManager

• Service Provisioning Agent

• Messaging System
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Logical View
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VMC client STS plugin Browser
(user app access)

Routers

CloudControllers App

Services

App

HealthManager

DEA Pool

Messaging
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Messaging
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Messaging
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“The Nervous System”



Messaging
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VMC client STS plugin Browser
(user app access)

Routers

CloudControllers App

Services

App

HealthManager

DEA Pool

Messaging



Messaging

• Addressing and Discovery
• No static IPs or DNS lookups req’d

• Just Layer 4

• Command and Control

• Central communication system

• Dial tone, fire and forget

• Protects *itself* at all costs

• Idempotent semantics
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Router
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Router

31

“Traffic Cop”



Router

32

VMC client STS plugin Browser
(user app access)

Routers

CloudControllers App

Services

App

HealthManager

DEA Pool

Messaging



Router

• Handles all HTTP traffic 

• Maintains distributed routing state 

• Routes URLs to applications

• Distributes load among instances

• Realtime distributed updates to 
routing tables from DEAs
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CloudController
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CloudController
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“The King”



CloudController
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CloudControllers App
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CloudController

• Handles all state transitions

• Deals with users, apps, and services

• Packages and Stages applications

• Binds Services to Applications

• Presents external REST API
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HealthManager
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HealthManager
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“Court Jester”



HealthManager
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VMC client STS plugin Browser
(user app access)

Routers

CloudControllers App

Services

App

HealthManager

DEA Pool

Messaging



HealthManager

• Monitors the state of  the world

• Initial value with realtime delta 
updates to “intended” vs “real”

• Determines drift

• Complains to the CloudControllers 
when something is not correct

• No power to change state itself
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DEA
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DEA
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“Droplet Execution Agent”



DEA
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VMC client STS plugin Browser
(user app access)

Routers

CloudControllers App

Services

App

HealthManager

DEA Pool

Messaging



DEA 
(Droplet Execution Agent)

• Responsible for running all applications

• Monitors all applications

• CPU, Mem, IO, Threads, Disk, FDs, etc 

• All apps look same to DEA
• start and stop

• Express ability and desire to run an application
• runtimes, options, cluster avoidance, memory/cpu

• Alerts on any change in state of  applications

• Provides secure/constrained OS runtime

• Hypervisor, Unix File and User, Linux Containers*

• Single or Multi-Tenant 
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How does it all
Work?
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Pushing an App

• Client (VMC/STS) pushes meta-data to CC

• Client optionally pushes resource 
signatures (diff  analysis, sys wide)

• Client pushes app resources to CC

• CC puts app together

• CC stages app asynchronously

• CC binds and stages services

• Droplet ready
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Running an App

• CC asks DEAs for “help”

• First DEA back wins! Simple

• CC sends start request to selected DEA

• DEA pushes the “green” button

• DEA waits and monitors pid and ephemeral 
port for app to bind

• When app is healthy, sends “register” message

• Register message is seen by HM and Routers

• Routers bind URL to host:port
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DEAs answer?

• DEAs first determine YES or NO
• correct runtime, options, memory, etc

• Then calculate a Delay Taint
• SHA hash of  application

• memory

• cpu

• Taint allows balancing and selection
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Scale up & down?

• Exact steps as running the app 
the first time

• SHA1 taint helps avoid clustering

• memory/cpu taint helps distribute 
as evenly as possible

• Nothing pre-computed

• Nothing assumed
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Crashes?

• If  your app stops and we did not tell 
it to, that is a crash

• Crashed apps are immediately 
detected by DEA and messaged

• Routers disconnect route instantly

• HM will signal CC
• something is wrong

• CC will issue run sequence again
52
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Access to my App?

• All routers understand where all 
instances of  your application are 
running

• Will randomly pick backend, not 
semantically aware.

• Will remove routes that are stale or 
unhealthy

• Session stickiness and replication 
available, but best to avoid if  possible
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What about
Services?
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Services

56
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(user app access)

Routers
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Services

• Service Advertisement

• Service Provisioning

• Gateway fronts multi-backends

• Service Nodes scale independent

• App and service talk directly

• API to register into system

• Closure for additional value
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Provisioning
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VMC/STS

Routers

CloudControllers Services Gateway

Service Node
MySQL

Service Node
Redis

Service Node
Redis

Messaging

Application

1

2

3

4
5

6



Access (Direct)
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Routers

CloudControllers Services Gateway

Service Node
MySQL

Service Node
Redis

Service Node
Redis
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Application

1
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Browser
(user app access)



Services
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     Cloud Foundry

vSphere

core services

Enterprise Services

SQLFire

apps

service 
controller service broker

provision/bind

consume consume

bind

VMware Dev Tools Partner Dev Tools

Data Director

Relational DB



Learn more:

www.cloudfoundry.org

blog.cloudfoundry.com

support.cloudfoundry.com
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http://www.cloudfoundry.org
http://www.cloudfoundry.org
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Thank You
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Questions?
dcollison@vmware.com

derek.collison@gmail.com

twitter: derekcollison
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