
Derek Collison

Design and Architecture

What is
Cloud Foundry?

2

The Open
Platform as a Service

3

What is PaaS?

4

Or more specifically,
aPaaS?

5

aPaaS

• Application Platform as a Service

• Applications and Services

6

aPaaS

• Application Platform as a Service

• Applications and Services

• Not
• VMs

• Memory

• Storage

• Networks

• CPU

7

What is
OpenPaaS?

8

OpenPaaS

• Multi-Language

• Multi-Framework

• Multi-Services

• Multi-Cloud, Multi-IaaS

• Hybrid - Public or Private or Both

• OpenSource

9

OpenPaaS

• Multi-Language
• Ruby, Java, Scala, Node.js, Erlang, Python, PHP..

• Multi-Framework
• Rails, Sinatra, Spring, Grails, Express, Lift

• Multi-Services
• MySQL, Postgres, MongoDB, Redis, RabbitMQ

• Multi-Cloud, Multi-IaaS
• vSphere, MicroCloud, OpenStack, AWS

10

The Open PaaS

Cl
ou

d
Pr

ov
ide

r I
nt

er
fa

ce

Application Service Interface

Private
Clouds

Public
Clouds

Micro
Clouds

11

Data
Services

Other
Services

Msg
Services

 vFabric
Postgres

vFabric
RabbitMQTM

What is
our Goal?

12

What was our Goal?

13

Raise the unit of currency
to be the application and
its associated services,

not the infrastructure

What was our Goal?

14

Best of breed delivery
platform for all modern

applications and
frameworks

What was our Goal?

15

Favor Choice

and

Openness

How was it Built?

16

How was it Built?

• Kernel (CloudFoundry OSS)
• Core PaaS System

• Kernel and Orchestrator Shells
• Layered on top of IaaS

• Orchestrator
• IaaS creation, management and

orchestration

17

High Level

18

IaaS

Orchestrator

CF Kernel

Hardware - CPU/Memory/Disk/Network

Clients (VMC, STS, Browser)

Basic Premises

• Fail Fast

• Self Healing

• Horizontally Scalable Components

• Distributed State

• No Single Point of Failure

• Should be as simple as possible

19

Basic Patterns

• Event-Driven

• Asynchronous

• Non-blocking

• Independent, Idempotent

• Message Passing

• Eventually Consistent

20

Basic Design

• All components loosely coupled
• Few “Classes”, many “Instances”

• Messaging as foundation
• Addressing and Component Discovery

• Command and Control

• JSON payloads

• HTTP or File/Blob for data transport

21

Kernel Components

• All dynamically discoverable

• Launch and scale in any order

• Can come and go as needed

• Monitor via HTTP and JSON

• Location independent

22

Kernel Components

• Router

• CloudController

• DEA

• HealthManager

• Service Provisioning Agent

• Messaging System

23

Logical View

24

VMC client STS plugin Browser
(user app access)

Routers

CloudControllers App

Services

App

HealthManager

DEA Pool

Messaging

25

A
rc

h
it

e
c

tu
re

Messaging

26

Messaging

27

“The Nervous System”

Messaging

28

VMC client STS plugin Browser
(user app access)

Routers

CloudControllers App

Services

App

HealthManager

DEA Pool

Messaging

Messaging

• Addressing and Discovery
• No static IPs or DNS lookups req’d

• Just Layer 4

• Command and Control

• Central communication system

• Dial tone, fire and forget

• Protects *itself* at all costs

• Idempotent semantics

29

Router

30

Router

31

“Traffic Cop”

Router

32

VMC client STS plugin Browser
(user app access)

Routers

CloudControllers App

Services

App

HealthManager

DEA Pool

Messaging

Router

• Handles all HTTP traffic

• Maintains distributed routing state

• Routes URLs to applications

• Distributes load among instances

• Realtime distributed updates to
routing tables from DEAs

33

CloudController

34

CloudController

35

“The King”

CloudController

36

VMC client STS plugin Browser
(user app access)

Routers

CloudControllers App

Services

App

HealthManager

DEA Pool

Messaging

CloudController

• Handles all state transitions

• Deals with users, apps, and services

• Packages and Stages applications

• Binds Services to Applications

• Presents external REST API

37

HealthManager

38

HealthManager

39

“Court Jester”

HealthManager

40

VMC client STS plugin Browser
(user app access)

Routers

CloudControllers App

Services

App

HealthManager

DEA Pool

Messaging

HealthManager

• Monitors the state of the world

• Initial value with realtime delta
updates to “intended” vs “real”

• Determines drift

• Complains to the CloudControllers
when something is not correct

• No power to change state itself

41

DEA

42

DEA

43

“Droplet Execution Agent”

DEA

44

VMC client STS plugin Browser
(user app access)

Routers

CloudControllers App

Services

App

HealthManager

DEA Pool

Messaging

DEA
(Droplet Execution Agent)

• Responsible for running all applications

• Monitors all applications

• CPU, Mem, IO, Threads, Disk, FDs, etc

• All apps look same to DEA
• start and stop

• Express ability and desire to run an application
• runtimes, options, cluster avoidance, memory/cpu

• Alerts on any change in state of applications

• Provides secure/constrained OS runtime

• Hypervisor, Unix File and User, Linux Containers*

• Single or Multi-Tenant

45

How does it all
Work?

46

Pushing an App

• Client (VMC/STS) pushes meta-data to CC

• Client optionally pushes resource
signatures (diff analysis, sys wide)

• Client pushes app resources to CC

• CC puts app together

• CC stages app asynchronously

• CC binds and stages services

• Droplet ready

47

48

A
rc

h
it

e
c

tu
re

Running an App

• CC asks DEAs for “help”

• First DEA back wins! Simple

• CC sends start request to selected DEA

• DEA pushes the “green” button

• DEA waits and monitors pid and ephemeral
port for app to bind

• When app is healthy, sends “register” message

• Register message is seen by HM and Routers

• Routers bind URL to host:port

49

DEAs answer?

• DEAs first determine YES or NO
• correct runtime, options, memory, etc

• Then calculate a Delay Taint
• SHA hash of application

• memory

• cpu

• Taint allows balancing and selection

50

Scale up & down?

• Exact steps as running the app
the first time

• SHA1 taint helps avoid clustering

• memory/cpu taint helps distribute
as evenly as possible

• Nothing pre-computed

• Nothing assumed

51

Crashes?

• If your app stops and we did not tell
it to, that is a crash

• Crashed apps are immediately
detected by DEA and messaged

• Routers disconnect route instantly

• HM will signal CC
• something is wrong

• CC will issue run sequence again
52

53

A
rc

h
it

e
c

tu
re

Access to my App?

• All routers understand where all
instances of your application are
running

• Will randomly pick backend, not
semantically aware.

• Will remove routes that are stale or
unhealthy

• Session stickiness and replication
available, but best to avoid if possible

54

What about
Services?

55

Services

56

VMC client STS plugin Browser
(user app access)

Routers

CloudControllers App

Services

App

HealthManager

DEA Pool

Messaging

Services

• Service Advertisement

• Service Provisioning

• Gateway fronts multi-backends

• Service Nodes scale independent

• App and service talk directly

• API to register into system

• Closure for additional value

57

Provisioning

58

VMC/STS

Routers

CloudControllers Services Gateway

Service Node
MySQL

Service Node
Redis

Service Node
Redis

Messaging

Application

1

2

3

4
5

6

Access (Direct)

59

Routers

CloudControllers Services Gateway

Service Node
MySQL

Service Node
Redis

Service Node
Redis

Messaging

Application

1

2

Browser
(user app access)

Services

60

 Cloud Foundry

vSphere

core services

Enterprise Services

SQLFire

apps

service
controller service broker

provision/bind

consume consume

bind

VMware Dev Tools Partner Dev Tools

Data Director

Relational DB

Learn more:

www.cloudfoundry.org

blog.cloudfoundry.com

support.cloudfoundry.com

61

http://www.cloudfoundry.org
http://www.cloudfoundry.org

62

Thank You

63

Questions?
dcollison@vmware.com

derek.collison@gmail.com

twitter: derekcollison

mailto:dcollison@vmware.com
mailto:dcollison@vmware.com
mailto:derek.collison@gmail.com
mailto:derek.collison@gmail.com

