Java.next

QConSF, November 2011
Erik Onnen

Wednesday, November 16, 2011

About Me

e Director of Architecture at Urban Airship (1 year)
* Previously Principal Engineer at Jive Software (3 years)
e 13 years writing Java, Python, C++

e Decent amount of hacking in Scala, Clojure, Ruby

Wednesday, November 16, 2011

Caveats

Wednesday, November 16, 2011

Caveats

* | like lots of things about Scala, Clojure and Groovy

Wednesday, November 16, 2011

Caveats

* | like lots of things about Scala, Clojure and Groovy

* | am not a programming language student, author or
expert

Wednesday, November 16, 2011

Caveats

* | like lots of things about Scala, Clojure and Groovy

* | am not a programming language student, author or
expert

e | am a practitioner

Wednesday, November 16, 2011

Caveats

* | like lots of things about Scala, Clojure and Groovy

* | am not a programming language student, author or
expert

e | am a practitioner

* \Write lots of code quickly with good tools

Wednesday, November 16, 2011

Caveats

* | like lots of things about Scala, Clojure and Groovy

* | am not a programming language student, author or
expert

e | am a practitioner
* \Write lots of code quickly with good tools

* Move quickly when troubleshooting production code

Wednesday, November 16, 2011

Caveats

* | like lots of things about Scala, Clojure and Groovy

* | am not a programming language student, author or
expert

e | am a practitioner
* \Write lots of code quickly with good tools
* Move quickly when troubleshooting production code

* Move quickly when re-engaging with code

Wednesday, November 16, 2011

In this Talk

e About Urban Airship

e Java at Urban Airship

e Java and the JVM

* Dat Tool

 Come at me Troll!

* \What do we need to improve"”?

* \What does the language need to improve”?

Wednesday, November 16, 2011

What is an Urban Airship®

* Hosting for mobile services that developers should not
build themselves

e Unified API for services across platforms

e SLAS for throughput, latency

| "The Simpsons" Tour for $32.50

» 97;, s 2 L NS = -
— ’.“ ‘.'l‘l\ b2 , 0
A “i:BlackBerry LivingSocial

Wednesday, November 16, 2011

Wednesday, November 16, 2011

FACT

e Over 50 Java services in production

Wednesday, November 16, 2011

FACT

e Over 50 Java services in production

e HT TP endpoints

Wednesday, November 16, 2011

FACT

e Over 50 Java services in production

e HT TP endpoints

e Databases

Wednesday, November 16, 2011

FACT

e Over 50 Java services in production

e HT TP endpoints
e Databases

* Message routing and delivery

Wednesday, November 16, 2011

FACT

e Over 50 Java services in production

e HT TP endpoints
e Databases
* Message routing and delivery

* | arge scale socket management using NIO

Wednesday, November 16, 2011

FACT

e Over 50 Java services in production

« HT TP endpoints

* Databases

* Message routing and delivery

* | arge scale socket management using NIO

e Large scale data analysis

Wednesday, November 16, 2011

FACT

e Over 50 Java services in production

e HT TP endpoints

* Databases

* Message routing and delivery

* | arge scale socket management using NIO
e Large scale data analysis

e \We also eschew most “Enterprise” Java

Wednesday, November 16, 2011

FACT

e Over 50 Java services in production

e HT TP endpoints
* Databases
* Message routing and delivery
* | arge scale socket management using NIO
e Large scale data analysis
e \We also eschew most “Enterprise” Java

e Everything in this talk we practice (and it works
really well for us)

Wednesday, November 16, 2011

FACT

A Day in UA Engineering

New Feature Development
Sustaining Engineering
IRC Tomfoolery
Production Support
Beer/Pong

Wednesday, November 16, 2011

Why Use The JVM?

Wednesday, November 16, 2011

Why Use The JVM?

e Fast.

Wednesday, November 16, 2011

Why Use The JVM?

e Fast.

e Networking, disk /0O, maths

Wednesday, November 16, 2011

Why Use The JVM?

* [ast.
e Networking, disk /0O, maths

* Unless the GC is running :(

Wednesday, November 16, 2011

Why Use The JVM?

* [ast.
e Networking, disk /0O, maths
* Unless the GC is running :(

* Consistent, coherent memory model and concurrency - no
“undefined behavior”

Wednesday, November 16, 2011

Why Use The JVM?

* [ast.
e Networking, disk /0O, maths
* Unless the GC is running :(

* Consistent, coherent memory model and concurrency - no
“undefined behavior”

e Scalable NIO

Wednesday, November 16, 2011

Why Use The JVM?

* [ast.
e Networking, disk /0O, maths
* Unless the GC is running :(

* Consistent, coherent memory model and concurrency - no
“undefined behavior”

e Scalable NIO

* Threading, with a clean signal and interrupt handling

Wednesday, November 16, 2011

Why Use The JVM?

* [ast.
e Networking, disk /0O, maths
* Unless the GC is running :(

* Consistent, coherent memory model and concurrency - no
“undefined behavior”

e Scalable NIO
* Threading, with a clean signal and interrupt handling

* |Introspect the runtime with little to no iImpact

Wednesday, November 16, 2011

Why Use The JVM?

* [ast.
e Networking, disk /0O, maths
* Unless the GC is running :(

* Consistent, coherent memory model and concurrency - no
“undefined behavior”

e Scalable NIO
* Threading, with a clean signal and interrupt handling
* |Introspect the runtime with little to no iImpact

e Snapshot the runtime under duress and analyze later

Wednesday, November 16, 2011

Why Use The JVM?

* [ast.
e Networking, disk /0O, maths
* Unless the GC is running :(

* Consistent, coherent memory model and concurrency - no
“undefined behavior”

e Scalable NIO
* Threading, with a clean signal and interrupt handling
* |Introspect the runtime with little to no iImpact

e Snapshot the runtime under duress and analyze later

P 4

* But - none of these are Java-specific

Wednesday, November 16, 2011

Why Java on the JVM?

Wednesday, November 16, 2011

Why Java on the JVM?

e There are many hammers available

Wednesday, November 16, 2011

Why Java on the JVM?

e There are many hammers available

* All are good at something

Wednesday, November 16, 2011

Why Java on the JVM?

e There are many hammers available

* All are good at something

* They are almost all interesting

Wednesday, November 16, 2011

Why Java on the JVM?

e There are many hammers available

* All are good at something

* They are almost all interesting

* Not all are OK at everything

Wednesday, November 16, 2011

Why Java on the JVM?

Wednesday, November 16, 2011

Why Java on the JVM?

e Java as a language is inherently simple - WYSIWYG (mostly)

Wednesday, November 16, 2011

Why Java on the JVM?

e Java as a language is inherently simple - WYSIWYG (mostly)

e Class behaviors are known by reading class code

Wednesday, November 16, 2011

Why Java on the JVM?

e Java as a language is inherently simple - WYSIWYG (mostly)
e Class behaviors are known by reading class code

 No multiple inheritance

Wednesday, November 16, 2011

Why Java on the JVM?

e Java as a language is inherently simple - WYSIWYG (mostly)
e Class behaviors are known by reading class code
 No multiple inheritance

 No monkey patching or trait collision rules to memorize

Wednesday, November 16, 2011

Why Java on the JVM?

e Java as a language is inherently simple - WYSIWYG (mostly)
e Class behaviors are known by reading class code
 No multiple inheritance
 No monkey patching or trait collision rules to memorize

* No hacking the global namespace or meta class munging

Wednesday, November 16, 2011

Why Java on the JVM?

e Java as a language is inherently simple - WYSIWYG (mostly)
e Class behaviors are known by reading class code
 No multiple inheritance
 No monkey patching or trait collision rules to memorize
* No hacking the global namespace or meta class munging

e No duck typing or hidden type coercion

Wednesday, November 16, 2011

Why Java on the JVM?

e Java as a language is inherently simple - WYSIWYG (mostly)
e Class behaviors are known by reading class code
 No multiple inheritance
 No monkey patching or trait collision rules to memorize
* No hacking the global namespace or meta class munging
e No duck typing or hidden type coercion

e Favors principle of least astonishment

Wednesday, November 16, 2011

Why Java on the JVM?

e Java as a language is inherently simple - WYSIWYG (mostly)
e Class behaviors are known by reading class code
 No multiple inheritance
 No monkey patching or trait collision rules to memorize
* No hacking the global namespace or meta class munging
e No duck typing or hidden type coercion

e Favors principle of least astonishment

’Ot - 10 :..1'

Wednesday, November 16, 2011

Why Java on the JVM?

Wednesday, November 16, 2011

Why Java on the JVM?

e Java is generally easy to read

Wednesday, November 16, 2011

Why Java on the JVM?

e Java is generally easy to read

e Fasy to read means easy to maintain

Wednesday, November 16, 2011

Why Java on the JVM?

e Java is generally easy to read

e Fasy to read means easy to maintain

Wednesday, November 16, 2011

Why Java on the JVM?

e Java is generally easy to read

Easy to read means easy to maintain

to .foreach
_ =
n2
.edge
.repeat
.back(.edge
.repeat
baseLoop(
.edge

.connect nl

_00p [ecognition in U++/vava/(Go/ocala - hobert runat, Google

Wednesday, November 16, 2011

public void buildConnect(int start, int end) {
new BasicBlockEdge(cfg, start, end);

Why Java On the J\/M? public int buildDiamond(imt start) {

int bb0 = start;

new BasicBlockEdge(cfg, bb0, bb0 + 1);
new BasicBlockEdge(cfg, bb0, bb0 + 2);
new BasicBlockEdge(cfg, bb0 + 1, bb0 + 3);

¢ _Java iS genera”y easy to read new BasicBlockEdge(cfg, bb0 + 2, bb0 + 3);

return bb0 + 3;

e Fasy to read means easy to mainte

public int buildStraight(imt start, int n) {
for (int i = 0; 4 < n; i++) {
buildConnect(start + i, start + i + 1);

}
(1 to 10).foreach(return start + n;

-){

n2

// Construct a simple loop with two diamonds in it
.edge public int buildBaseLoop(int from) {
.repeat (100, int header = buildStraight(from, 1);
int diamondl = buildDiamond(header);
int dll = buildStraight(diamondl, 1);
-repeat ‘o, int diamond2 = buildDiamond(dll);
baseLoop(_))) int footer = buildStraight(diamond2, 1);
buildConnect(diamond2, dll);
buildConnect(diamondl, header);

.back(.edge

.edge)
.connect(nl)

buildConnect(footer, from);
footer = buildStraight(footer, 1);
return footer;

public static void main(String[] args) {
app.buildBaselLoop(0);

Loop Recognition in C++/Java/Go/Scala - Robert HUNG , Google = —

Wednesday, November 16, 2011

Why Java on the JVM?

Wednesday, November 16, 2011

Why Java on the JVM?

* Almost no transparent performance degradation

Wednesday, November 16, 2011

Why Java on the JVM?

e Almost no transparent performance degradation

(defn- parse-headers
"Returns a map of the response headers from connection.’
[#*HttpURLConnection connection]
(let [hs (.getHeaderFields connection))]
(into {} (for [[k v] hs :when k] [(keyword (.toLowerCase k)) (seq v)]))))

(defn- parse-cookies

"Returns a map of cookies when given the Set-Cookie string sent
by a server.”

[#°String cookie-string]

(when cookie-string

(into {}
(for [#°String cookie (.split cookie-string ";")]
(let [keyval (map (fn [#°String x] (.trim x)) (.split cookie "=" 2))]

[(first keyval) (second keyval)])))))

(defn- create-cookie-string
"Returns a string suitable for sending to the server in the
\"Cookie\" header when given a clojure map of cookies.”
[cookie-map]
(str-join "; " (map (fn [cookie]
(str #"String (as-str (key cookie))

i il

#°String (as-str (val cookie)))) o
cookie-map))) A

Wednesday, November 16, 2011

Why Java on the JVM?

Wednesday, November 16, 2011

Why Java on the JVM?

 No impedance with runtime introspection

Wednesday, November 16, 2011

Why Java on the JVM?

 No impedance with runtime introspection

e A thread dump is a thread dump

Wednesday, November 16, 2011

Why Java on the JVM?

 No impedance with runtime introspection
e A thread dump is a thread dump
* A heap dump is a heap dump

Wednesday, November 16, 2011

Why Java on the JVM?

re.server.RequestDecoder. messageReceived(ChannelHandlerContext, MessageEvent)
.core.server.RequestDecoder.handleRequest(ChannelHandlerContext, FramedRead)
el.SimpleChannelHandler.handleUpstream(ChannelHandlerContext, ChannelEvent)
eactor.core.server.RequestHandler. messageReceived(ChannelHandlerContext, MessageEvent)
ip.radon.proxy.rpc.RadonProxyCommandHandler.doHandleRequest(Channel, Reactor$Request)
irship.radon.proxy.rpc.RadonProxyCommandHandler.proxyWrite(Channel, RequestTuple)
snairship.radon.proxy.routing. AsyncWriteShard. write(RequestTuple)
javaapi.producer.Producer.send(ProducerData)
ka.producer.Producer.send(Szq)
kafka.producer.ProducerPool.send(Seq)
% scala.collection.mutable.ResizableArray$class.foreach(ResizableArray, Functionl)
% kafka.producer.ProducerPool$$anonfun$sends$l.apply(Object)
- % kafka.producer.ProducerPool$$anonfun$sendsl. apply$mcVissp(int)
= % scala.collection.mutable.ArrayBuffer. map(Functionl, CanBuildFrom)
= % scala.collection.TraversableLike$class. map(TraversableLike, Functionl, CanBuildFrom)
+ % scala.collection.mutable.ResizableArray$class.foreach(ResizableArray, Functionl)

- % scala.collection.mutable. ArrayBuffer.sizeHint(TraversablelLike, int)
% scala.collection.generic.TraversableFactory$GenericCanBuildFrom.apply(Object)
% scala.collection.mutable. ArrayBuffer.result()
% scala.collection. TraversableLike$$anonfunmapl. <init>(TraversableLike, Functionl, Builder)
% scala.collection.mutable. ArrayBuffer.sizeHint$default$2()
% scala.collection.mutable.ArrayBuffer.repr()

[+

+

+

+ % scala.collection.mutable.ArrayBuffer.partition(Functionl)
+ % scala.collection.mutable. ArrayBuffer.apply(int)
+ % scala.collection.mutable.StringBuilder. <init>()
+ % scala.collection.mutable.ArrayBuffer.sizel()
+ % scala.collection.Seq$%.canBuildFrom()
% scala.collection.mutable.StringBuilder.append(Object)
% kafka.producer.ProducerPool$$anonfunssends$ls$$anonfun$3 <init>(ProducerPool$$anonfun$send$l)

421,657

420,521
467,476
463,152
427,156
426,750

426,445 1¢

397,252
283,673
264,097
260,786
172,580
134,009
131,178
130,567

14,667
Y, 707
1,590
1,120

542
590

e
-

Wednesday, November 16, 2011

Why Java on the JVM?

Wednesday, November 16, 2011

Why Java on the JVM?

e Little idiomatic impedance with the runtime

Wednesday, November 16, 2011

Why Java on the JVM?

e Little idiomatic impedance with the runtime

N1iP.//A€V.0120.Co0M/U10/01/SCala-SuUpPPOriS-non-IoCalIETuiiS-it

Wednesday, November 16, 2011

http://dev.bizo.com/2010/01/scala-supports-non-local-returns.html
http://dev.bizo.com/2010/01/scala-supports-non-local-returns.html

Why Java on the JVM?

e Little idiomatic impedance with the runtime

object Foo
def main args: Array String

foo(List(1l, 2,

def foo(l: List' Int)l): Int
l.foreach { (1) =>
println(i

return

Ntip://aev.ni1zo.com/2010/01/Scala-supporiS-non-10CalsreturiS#tiil

Wednesday, November 16, 2011

http://dev.bizo.com/2010/01/scala-supports-non-local-returns.html
http://dev.bizo.com/2010/01/scala-supports-non-local-returns.html

Why Java on the JVM?

Wednesday, November 16, 2011

Why Java on the JVM?

e The tools

Wednesday, November 16, 2011

Why Java on the JVM?

e The tools

* People have mixed reactions to refactoring tools

Wednesday, November 16, 2011

Why Java on the JVM?

* The tools
* People have mixed reactions to refactoring tools

e |[DEs starting to “learn”

Wednesday, November 16, 2011

Why Java on the JVM?

* The tools
* People have mixed reactions to refactoring tools
e |[DEs starting to “learn”

* Find Usages

Wednesday, November 16, 2011

Why Java on the JVM?

* The tools
* People have mixed reactions to refactoring tools
e |[DEs starting to “learn”
* Find Usages

e [he ecosystem

Wednesday, November 16, 2011

Why Java on the JVM?

* The tools
* People have mixed reactions to refactoring tools
e |[DEs starting to “learn”
* Find Usages

e [he ecosystem

* One of if not the largest collections of FOSS libraries in
existence

Wednesday, November 16, 2011

Why Java on the JVM?

* The tools
* People have mixed reactions to refactoring tools
e |[DEs starting to “learn”
* Find Usages

e [he ecosystem

* One of if not the largest collections of FOSS libraries in
existence

* No language impedance

Wednesday, November 16, 2011

Dat Tool

Wednesday, November 16, 2011

Dat Tool

Wednesday, November 16, 2011

Dat Tool

o S

Wednesday, November 16, 2011

Dat Tool

Wednesday, November 16, 2011

Dat Tool

Wednesday, November 16, 2011

Dat Tool

Wednesday, November 16, 2011

Dat Tool

e Qur job as developers is to iImplement something of
business value

Wednesday, November 16, 2011

Dat Tool

e Qur job as developers is to iImplement something of
business value

e Things that make us more productive are good

Wednesday, November 16, 2011

Dat Tool

e Qur job as developers is to iImplement something of
business value

e Things that make us more productive are good

e [t's OK to use tools to help you build things if they
improve your productivity and further the roles of a
developer

Wednesday, November 16, 2011

Dat Tool

e Qur job as developers is to iImplement something of
business value

e Things that make us more productive are good

e [t's OK to use tools to help you build things if they
improve your productivity and further the roles of a
developer

 Most IDEs are completely misunderstood by someone
who has never tried them - “/ would miss my modal
editing”

Wednesday, November 16, 2011

Come at me Troll!

Wednesday, November 16, 2011

Come at me Troll!

But Java doesn’t have closures!

Wednesday, November 16, 2011

Come at me Troll!

But Java doesn’t have closures!

» Java does have closures (imperfect closures to be exact)

Wednesday, November 16, 2011

Come at me Troll!

But Java doesn’t have closures!
» Java does have closures (imperfect closures to be exact)

e Java does not have lamlbda expressions (yet)

Wednesday, November 16, 2011

Come at me Troll!

But Java doesn’t have closures!
» Java does have closures (imperfect closures to be exact)
e Java does not have lamlbda expressions (yet)

e They're nowhere near as painful as people claim

Wednesday, November 16, 2011

Come at me Troll!

But Java doesn’t have closures!
» Java does have closures (imperfect closures to be exact)
e Java does not have lamlbda expressions (yet)

e They're nowhere near as painful as people claim

final Channel channel this.stateMachine.getApidChannel (realApid);
if (channel != null) {
if (this.serviceManager.getAirDockService().registerDevice(realApid)) {
channel.getCloseFuture().addListener(new ChannelFutureListener() {
€0verride
public void operationComplete(ChannelFuture future) throws Exception {

serviceManager.getAirDockService() .removeDevice(realApid);

}):

Wednesday, November 16, 2011

Come at me Troll!

Wednesday, November 16, 2011

Come at me Troll!

But Java makes me type so much and that hurts my
delicate hands!

Wednesday, November 16, 2011

Come at me Troll!

But Java makes me type so much and that hurts my
delicate hands!

e Stop pounding the nail with your head

Wednesday, November 16, 2011

Come at me Troll!

But Java makes me type so much and that hurts my
delicate hands!

e Stop pounding the nail with your head

® QuickTime Player File Edit View Share Window Help

i| helium-ii - [~/Dropbox/projects/helium] - [helium-ii] - .../src/main/java/com/u

== = | & vV ™ Rla @ R » Gl 2 = | & :

e RE S:) o g 2 | & A0 <ﬂ 1_1:1‘ v [é_], i 45 &= g .;;é‘,‘? &~ | | @D ||
shelium src Cimain £ java 0 com [0 urbanairship [0 heliumii, 55 consumer (©) MessageConsumer:

8| © MessageConsumer.java

U | NRR2AARARRIRMINE rJjava

] - -

o if (previousChannel != null) {

o log.warn("Apid " + realApid + " is already connected. " +

gm "Disconnecting old channel, and registering the new one.");

previousChannel.close();

}

if (this.stateMachine.registered(tempApid, realApid)) {

final Channel channel = this.stateMachine.getApidChannel(realApid);
if (channel != null) {

R

Wednesday, November 16, 2011

Come at me Troll!

Wednesday, November 16, 2011

Come at me Troll!

But Java makes me type so much and that hurts my
delicate hands!

Wednesday, November 16, 2011

Come at me Troll!

But Java makes me type so much and that hurts my
delicate hands!

» val numbers = Array|Integer|(1,2,3,4)

Wednesday, November 16, 2011

Come at me Troll!

But Java makes me type so much and that hurts my
delicate hands!

» val numbers = Array|Integer|(1,2,3,4)
e val numbers = Array(1,2,3,4)

Wednesday, November 16, 2011

Come at me Troll!

But Java makes me type so much and that hurts my
delicate hands!

» val numbers = Array|Integer|(1,2,3,4)
e val numbers = Array(1,2,3,4)

e int[] numbers = new int[]{1,2,3,4};

Wednesday, November 16, 2011

Come at me Troll!

But Java makes me type so much and that hurts my
delicate hands!

» val numbers = Array|Integer|(1,2,3,4)
e val numbers = Array(1,2,3,4)

e int[] numbers = new int[]{1,2,3,4};

Hey, that example is not fair!

Wednesday, November 16, 2011

Come at me Troll!

But Java makes me type so much and that hurts my
delicate hands!

» val numbers = Array|Integer|(1,2,3,4)
e val numbers = Array(1,2,3,4)

e int[] numbers = new int[]{1,2,3,4};

Hey, that example is not fair!

* val str = “SPORTS!”

Wednesday, November 16, 2011

Come at me Troll!

But Java makes me type so much and that hurts my
delicate hands!

» val numbers = Array|Integer|(1,2,3,4)
e val numbers = Array(1,2,3,4)

e int[] numbers = new int[]{1,2,3,4};

Hey, that example is not fair!
e val str = “SPORTS!”
e final String str = “SPORTS!”;

Wednesday, November 16, 2011

Come at me Troll!

But Java has soooo much line noise it’s hard to read!
e Stop pounding the nail with your head

e The human brain simply doesn’t work like that

| cdnuolt blveiee taht I cluod aulaclty uesdnatnrd waht I was
rdanieg. The phaonmneal pweor of the hmuan mnid, aoccdrnig
to a rscheearch at Cmabrigde Uinervtisy, it dsenot mtaetr in
waht oerdr the Itteres in 2a wrod are, the olny iproamtnt tihng is
taht the frsit and Isat Itteer be in the rghi t pclae. The rset can
be a taotl mses and you can sitll raed it whotuit a pboerim.
Tihs is bcuseae the huamn mnid deos not raed ervey lteter by
istlef, but the wrod as a wilohe. Azanmig huh? yaeh and I
awlyas tghuhot sipeling was ipmorantt! if you can raed tihs

forwrad it. I

Wednesday, November 16, 2011

What We Can Change

Wednesday, November 16, 2011

What We Can Change

* Java gets a bad rap, often for baggage in the ecosystem as a
whole rather than the language specifically

Wednesday, November 16, 2011

What We Can Change

* Java gets a bad rap, often for baggage in the ecosystem as a
whole rather than the language specifically

 Some of this is due to big vendors in the space

Wednesday, November 16, 2011

What We Can Change

* Java gets a bad rap, often for baggage in the ecosystem as a
whole rather than the language specifically

 Some of this is due to big vendors in the space

e Some of it Is because of the bloat

Wednesday, November 16, 2011

What We Can Change

* Java gets a bad rap, often for baggage in the ecosystem as a
whole rather than the language specifically

e Some of this is due to big vendors in the space
e Some of it is because of the bloat

* But usually, it's because we Java developers learn too slowly
from things going on around us and get stuck in our ways

Wednesday, November 16, 2011

What We Can Change

Wednesday, November 16, 2011

What We Can Change

* Do not - view the world as a pattern waiting to happen

Wednesday, November 16, 2011

What We Can Change

* Do not - view the world as a pattern waiting to happen

e Patterns, Enterprise Patterns, Anti-patterns and please yes,
buy my book

Wednesday, November 16, 2011

What We Can Change

* Do not - view the world as a pattern waiting to happen

e Patterns, Enterprise Patterns, Anti-patterns and please yes,
buy my book

* Do - get your job done

Wednesday, November 16, 2011

What We Can Change

* Do not - view the world as a pattern waiting to happen

e Patterns, Enterprise Patterns, Anti-patterns and please yes,
buy my book

* Do - get your job done

* Your business sponsors don't care that you used
FlyweightSingletonFactoryDelegateVisitor.java

Wednesday, November 16, 2011

What We Can Change

* Do not - view the world as a pattern waiting to happen

e Patterns, Enterprise Patterns, Anti-patterns and please yes,
buy my book

* Do - get your job done

* Your business sponsors don't care that you used
FlyweightSingletonFactoryDelegateVisitor.java

e Of course, some usage is fine but focus on writing code -
patterns don’t define correctness

Wednesday, November 16, 2011

What We Can Change

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to have non-domain code in your code

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to have non-domain code in your code

* [f [atency to a system matters, measure that explicitly and
overtly

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to have non-domain code in your code

* [f [atency to a system matters, measure that explicitly and
overtly

* Be tempted into talk of AoP and cross-cutting concerns - your
job Isn’t just coding, it's also sustaining and troubleshooting

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to have non-domain code in your code

* [f [atency to a system matters, measure that explicitly and
overtly

* Be tempted into talk of AoP and cross-cutting concerns - your
job Isn’t just coding, it's also sustaining and troubleshooting

e Concurrency doesn’t align w/ business concerns anyway

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to have non-domain code in your code

* [f [atency to a system matters, measure that explicitly and
overtly

* Be tempted into talk of AoP and cross-cutting concerns - your
job Isn’t just coding, it's also sustaining and troubleshooting

e Concurrency doesn’t align w/ business concerns anyway

* Business domain doesn’t have “logs” but OPS needs to

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to have non-domain code in your code

* [f [atency to a system matters, measure that explicitly and
overtly

* Be tempted into talk of AoP and cross-cutting concerns - your
job Isn’t just coding, it's also sustaining and troubleshooting

e Concurrency doesn’t align w/ business concerns anyway
* Business domain doesn’t have “logs” but OPS needs to

* Do - leverage proven, simple libraries to help

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to have non-domain code in your code

* [f [atency to a system matters, measure that explicitly and
overtly

* Be tempted into talk of AoP and cross-cutting concerns - your
job Isn’t just coding, it's also sustaining and troubleshooting

e Concurrency doesn’t align w/ business concerns anyway
* Business domain doesn’t have “logs” but OPS needs to
* Do - leverage proven, simple libraries to help

* Coda Hale’s metrics library out of Yammer is essential

P 4

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to have non-domain code in your code

* [f [atency to a system matters, measure that explicitly and
overtly

* Be tempted into talk of AoP and cross-cutting concerns - your
job Isn’t just coding, it's also sustaining and troubleshooting

e Concurrency doesn’t align w/ business concerns anyway

* Business domain doesn’t have “logs” but OPS needs to
* Do - leverage proven, simple libraries to help

* Coda Hale’s metrics library out of Yammer is essential

* Log4d, SLF4J, lots of good choices

F 4

Wednesday, November 16, 2011

What We Can Change

Wednesday, November 16, 2011

What We Can Change

* Do - learn from Erlang’s immutable data structures

Wednesday, November 16, 2011

What We Can Change

* Do - learn from Erlang’s immutable data structures

* Move data using immutable models

Wednesday, November 16, 2011

What We Can Change

* Do - learn from Erlang’s immutable data structures

* Move data using immutable models

e Fast, efficient, easy to reason about, thread safe

Wednesday, November 16, 2011

What We Can Change

* Do - learn from Erlang’s immutable data structures

* Move data using immutable models
e Fast, efficient, easy to reason about, thread safe

* Easy to put down the wire (Jackson, PBs) or into a schema-
less store

Wednesday, November 16, 2011

What We Can Change

* Do - learn from Erlang’s immutable data structures
* Move data using immutable models
e Fast, efficient, easy to reason about, thread safe

* Easy to put down the wire (Jackson, PBs) or into a schema-
less store

* Just properties, no getFoo

Wednesday, November 16, 2011

What We Can Change

* Do - learn from Erlang’s immutable data structures
* Move data using immutable models
e Fast, efficient, easy to reason about, thread safe

* Easy to put down the wire (Jackson, PBs) or into a schema-
less store

* Just properties, no getFoo

 No behaviors

Wednesday, November 16, 2011

What We Can Change

* Do - learn from Erlang’s immutable data structures
* Move data using immutable models
e Fast, efficient, easy to reason about, thread safe

* Easy to put down the wire (Jackson, PBs) or into a schema-
less store

* Just properties, no getFoo
* No behaviors

* Do not - assume your classes need to model “real world” things

F 4

Wednesday, November 16, 2011

What We Can Change

* Do - learn from Erlang’s immutable data structures

* Move data using immutable models
e Fast, efficient, easy to reason about, thread safe

* Easy to put down the wire (Jackson, PBs) or into a schema-
less store

* Just properties, no getFoo
* No behaviors
* Do not - assume your classes need to model “real world” things

* A class doesn’t exist in the “real world”, don’t try and make it
look like that

P 4

Wednesday, November 16, 2011

What We Can Change

* Do - learn from Erlang’s immutable data structures

* Move data using immutable models
e Fast, efficient, easy to reason about, thread safe

* Easy to put down the wire (Jackson, PBs) or into a schema-
less store

* Just properties, no getFoo
* No behaviors
* Do not - assume your classes need to model “real world” things

* A class doesn’t exist in the “real world”, don’t try and make it
look like that

F 4

e Bob doesn’t have a save() method

Wednesday, November 16, 2011

What We Can Change

Wednesday, November 16, 2011

What We Can Change

Do - create coarse grained, transaction-aligned APIs

Wednesday, November 16, 2011

What We Can Change

Do - create coarse grained, transaction-aligned APIs

e | eave N0 ambiguity about what impact an operation has on a
back-end data store

Wednesday, November 16, 2011

What We Can Change

Do - create coarse grained, transaction-aligned APIs

e | eave N0 ambiguity about what impact an operation has on a
back-end data store

 Measure latency to external services

Wednesday, November 16, 2011

What We Can Change

Do - create coarse grained, transaction-aligned APIs

e | eave N0 ambiguity about what impact an operation has on a
back-end data store

 Measure latency to external services

e Easier to reason about concurrency (implementation and
consumption)

Wednesday, November 16, 2011

What We Can Change

Do - create coarse grained, transaction-aligned APIs

e | eave N0 ambiguity about what impact an operation has on a
back-end data store

Measure latency to external services

Easier to reason about concurrency (implementation and
consumption)

(GO’s behavior separate from data

Wednesday, November 16, 2011

What We Can Change

Do - create coarse grained, transaction-aligned APIs

e | eave N0 ambiguity about what impact an operation has on a
back-end data store

Measure latency to external services

Easier to reason about concurrency (implementation and
consumption)

 (G0’s behavior separate from data

Do not - use magic, code generating systems that hide transactions
across APls

F 4

Wednesday, November 16, 2011

What We Can Change

Do - create coarse grained, transaction-aligned APIs

e | eave N0 ambiguity about what impact an operation has on a
back-end data store

Measure latency to external services

Easier to reason about concurrency (implementation and
consumption)

 (G0’s behavior separate from data

Do not - use magic, code generating systems that hide transactions
across APls

e | eaky abstraction - you call a method, a TXN happens

F 4

Wednesday, November 16, 2011

What We Can Change

Do - create coarse grained, transaction-aligned APIs

e | eave N0 ambiguity about what impact an operation has on a
back-end data store

Measure latency to external services

Easier to reason about concurrency (implementation and
consumption)

 (G0’s behavior separate from data

Do not - use magic, code generating systems that hide transactions
across APls

e | eaky abstraction - you call a method, a TXN happens

* \When performance suffers, you will want to know what is going ow
but can’t >

Wednesday, November 16, 2011

What We Can Change

Wednesday, November 16, 2011

What We Can Change

* Do - create coarse grained, transaction-aligned APIs operating on
immutable models

Wednesday, November 16, 2011

What We Can Change

* Do - create coarse grained, transaction-aligned APIs operating on
immutable models

e Learn from Go’s keeping operations separate from data

Wednesday, November 16, 2011

What We Can Change

* Do - create coarse grained, transaction-aligned APIs operating on
immutable models

e Learn from Go’s keeping operations separate from data

e Return clones of data but nothing that has ties back in to a data
store

Wednesday, November 16, 2011

What We Can Change

* Do - create coarse grained, transaction-aligned APIs operating on
immutable models

e Learn from Go’s keeping operations separate from data

e Return clones of data but nothing that has ties back in to a data
store

e Easier to reason about, no ambiguity, pass as messages

Wednesday, November 16, 2011

What We Can Change

* Do - create coarse grained, transaction-aligned APIs operating on
immutable models

e Learn from Go’s keeping operations separate from data

e Return clones of data but nothing that has ties back in to a data
store

e Easier to reason about, no ambiguity, pass as messages

Do not - use magic, code generating systems that hide transactions
across APls

F 4

Wednesday, November 16, 2011

What We Can Change

* Do - create coarse grained, transaction-aligned APIs operating on
immutable models

e Learn from Go’s keeping operations separate from data

e Return clones of data but nothing that has ties back in to a data
store

e Easier to reason about, no ambiguity, pass as messages

Do not - use magic, code generating systems that hide transactions
across APls

e A class doesn’t exist in the “real world”, don’t try and make it
look like the real world

F 4

Wednesday, November 16, 2011

What We Can Change

* Do - create coarse grained, transaction-aligned APIs operating on
immutable models

e Learn from Go’s keeping operations separate from data

e Return clones of data but nothing that has ties back in to a data
store

e Easier to reason about, no ambiguity, pass as messages

Do not - use magic, code generating systems that hide transactions
across APls

e A class doesn’t exist in the “real world”, don’t try and make it
look like the real world

 Bob doesn’t have a save() method

F 4

Wednesday, November 16, 2011

What We Can Change

* Do - create coarse grained, transaction-aligned APIs operating on
immutable models

e Learn from Go’s keeping operations separate from data

e Return clones of data but nothing that has ties back in to a data
store

e Easier to reason about, no ambiguity, pass as messages

Do not - use magic, code generating systems that hide transactions
across APls

e A class doesn’t exist in the “real world”, don’t try and make it
look like the real world

 Bob doesn’t have a save() method

F 4

 Nest models in behaviors, in models in behaviors

Wednesday, November 16, 2011

What We Can Change

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to write SQL or actually new an object

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to write SQL or actually new an object

* Executing an SQL query is about the easiest thing you can do

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to write SQL or actually new an object

* Executing an SQL query is about the easiest thing you can do

* Mapping it to some data isn’t all that hard either

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to write SQL or actually new an object

* Executing an SQL query is about the easiest thing you can do
* Mapping it to some data isn’t all that hard either

e Jest it and move on

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to write SQL or actually new an object

* Executing an SQL query is about the easiest thing you can do
* Mapping it to some data isn’t all that hard either
e Jest it and move on

* Do - question configuration complexity and network abstractions

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to write SQL or actually new an object

* Executing an SQL query is about the easiest thing you can do
* Mapping it to some data isn’t all that hard either

e Jest it and move on

* Do - question configuration complexity and network abstractions

* |f you go to the wire, that should be in your face

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to write SQL or actually new an object

* Executing an SQL query is about the easiest thing you can do
* Mapping it to some data isn’t all that hard either
e Jest it and move on

* Do - question configuration complexity and network abstractions

* |f you go to the wire, that should be in your face

XML configurations are an immediate indicator of impending
complexity

F 4

Wednesday, November 16, 2011

What We Can Change

* Do not - be afraid to write SQL or actually new an object

* Executing an SQL query is about the easiest thing you can do
* Mapping it to some data isn’t all that hard either
e Jest it and move on

* Do - question configuration complexity and network abstractions

* |f you go to the wire, that should be in your face

XML configurations are an immediate indicator of impending
complexity

e Realize 1oC is not in and of itself a bad thing but you don’t
need a framework to accomplish it

F 4

Wednesday, November 16, 2011

What We Can Change

Wednesday, November 16, 2011

What We Can Change

* Do not - use XML for anything. Ever.

Wednesday, November 16, 2011

What We Can Change

* Do not - use XML for anything. Ever.

XML is pretty much good at nothing other than cementing
unnecessary complexity at every level

Wednesday, November 16, 2011

What We Can Change

* Do not - use XML for anything. Ever.

XML is pretty much good at nothing other than cementing
unnecessary complexity at every level

e XML is not code!

Wednesday, November 16, 2011

What We Can Change

* Do not - use XML for anything. Ever.

XML is pretty much good at nothing other than cementing
unnecessary complexity at every level

e XML is not code!

* Do - use simple, standard mechanisms

Wednesday, November 16, 2011

What We Can Change

* Do not - use XML for anything. Ever.

XML is pretty much good at nothing other than cementing
unnecessary complexity at every level

« XML is not code!
* Do - use simple, standard mechanisms

* For configuration files, use properties files

Wednesday, November 16, 2011

What We Can Change

* Do not - use XML for anything. Ever.

XML is pretty much good at nothing other than cementing
unnecessary complexity at every level

« XML is not code!
* Do - use simple, standard mechanisms
* For configuration files, use properties files

e Fasier to use iIn modern automation environments like
Puppet

Wednesday, November 16, 2011

What We Can Change

* Do not - use XML for anything. Ever.

XML is pretty much good at nothing other than cementing
unnecessary complexity at every level

« XML is not code!
* Do - use simple, standard mechanisms
* For configuration files, use properties files

e Fasier to use iIn modern automation environments like
Puppet

 Commons Config rocks

Wednesday, November 16, 2011

What We Can Change

* Do not - use XML for anything. Ever.

XML is pretty much good at nothing other than cementing
unnecessary complexity at every level

« XML is not code!
* Do - use simple, standard mechanisms
* For configuration files, use properties files

e Fasier to use iIn modern automation environments like
Puppet

 Commons Config rocks

 For wire data, use PBs or JSON

Wednesday, November 16, 2011

What We Can Change

Wednesday, November 16, 2011

What We Can Change

* Do not - accept the “Enterprise” mentality

Wednesday, November 16, 2011

What We Can Change

* Do not - accept the “Enterprise” mentality

* Just say no to EARs, EJBs, and mostly WARS

Wednesday, November 16, 2011

What We Can Change

* Do not - accept the “Enterprise” mentality
* Just say no to EARs, EJBs, and mostly WARS

* More XML, complex build process, complex deploy process

Wednesday, November 16, 2011

What We Can Change

* Do not - accept the “Enterprise” mentality
* Just say no to EARs, EJBs, and mostly WARS
* More XML, complex build process, complex deploy process

* Generally prohibit important things

Wednesday, November 16, 2011

What We Can Change

* Do not - accept the “Enterprise” mentality
* Just say no to EARs, EJBs, and mostly WARS
* More XML, complex build process, complex deploy process
* Generally prohibit important things

e Not needed for scale

Wednesday, November 16, 2011

What We Can Change

* Do not - accept the “Enterprise” mentality
* Just say no to EARs, EJBs, and mostly WARS
* More XML, complex build process, complex deploy process
* Generally prohibit important things
* Not needed for scale

* Do - write small, discrete, stand-alone services

Wednesday, November 16, 2011

What We Can Change

* Do not - accept the “Enterprise” mentality
* Just say no to EARs, EJBs, and mostly WARS
* More XML, complex build process, complex deploy process
* Generally prohibit important things
* Not needed for scale
* Do - write small, discrete, stand-alone services

e Easier to operate

Wednesday, November 16, 2011

What We Can Change

* Do not - accept the “Enterprise” mentality
* Just say no to EARs, EJBs, and mostly WARS
* More XML, complex build process, complex deploy process
* Generally prohibit important things
* Not needed for scale
* Do - write small, discrete, stand-alone services
e Easier to operate

e Fasier to reason about

Wednesday, November 16, 2011

What We Can Change

* Do not - accept the “Enterprise” mentality
* Just say no to EARs, EJBs, and mostly WARS
* More XML, complex build process, complex deploy process
* Generally prohibit important things

e Not needed for scale

* Do - write small, discrete, stand-alone services

e Easier to operate
e Fasier to reason about

e Strive for consistent approaches to all Java services

F 4

Wednesday, November 16, 2011

What We Can Change

Wednesday, November 16, 2011

What We Can Change

* Do - stop making web development so complicated

Wednesday, November 16, 2011

What We Can Change

* Do - stop making web development so complicated

e Conventional approaches are too difficult, especially for APIs

Wednesday, November 16, 2011

What We Can Change

* Do - stop making web development so complicated
e Conventional approaches are too difficult, especially for APIs

e Consider Play or simply just embedding Jetty

Wednesday, November 16, 2011

What We Can Change

* Do - stop making web development so complicated
e Conventional approaches are too difficult, especially for APIs
e Consider Play or simply just embedding Jetty

* Embedding Jetty takes 16 lines of real code, add Jersey
Annotations for fast, strongly typed HT TP endpoints and profit!

Wednesday, November 16, 2011

What We Can Change

* Do - stop making web development so complicated
e Conventional approaches are too difficult, especially for APIs

e Consider Play or simply just embedding Jetty

* Embedding Jetty takes 16 lines of real code, add Jersey
Annotations for fast, strongly typed HT TP endpoints and profit!

* Do not - assume you need a WAR in a container to deliver or
scale

Wednesday, November 16, 2011

What We Can Change

* Do - stop making web development so complicated
e Conventional approaches are too difficult, especially for APIs

e Consider Play or simply just embedding Jetty

* Embedding Jetty takes 16 lines of real code, add Jersey
Annotations for fast, strongly typed HT TP endpoints and profit!

* Do not - assume you need a WAR in a container to deliver or
scale

e Sites of massive scale succeed without these mechanisms

Wednesday, November 16, 2011

What We Can Change

* Do - stop making web development so complicated
e Conventional approaches are too difficult, especially for APIs

e Consider Play or simply just embedding Jetty

* Embedding Jetty takes 16 lines of real code, add Jersey
Annotations for fast, strongly typed HT TP endpoints and profit!

* Do not - assume you need a WAR in a container to deliver or
scale

e Sites of massive scale succeed without these mechanisms

* Big vendors push a false sense of security

Wednesday, November 16, 2011

What We Can Change

Wednesday, November 16, 2011

What We Can Change

Do - abuse final

Wednesday, November 16, 2011

What We Can Change

Do - abuse final

e Simplifies closures, predicates, etc.

Wednesday, November 16, 2011

What We Can Change

* Do - abuse final
e Simplifies closures, predicates, etc.

* Avoid public APIs relying on subclassing

Wednesday, November 16, 2011

What We Can Change

* Do - abuse final
e Simplifies closures, predicates, etc.
* Avoid public APIs relying on subclassing

* Clear expression of intent - you shall not change!

Wednesday, November 16, 2011

What We Can Change

* Do - abuse final
e Simplifies closures, predicates, etc.
* Avoid public APIs relying on subclassing
* Clear expression of intent - you shall not change!

* Do not - do it for performance reasons

Wednesday, November 16, 2011

What We Can Change

* Do - abuse final

e Simplifies closures, predicates, etc.

* Avoid public APIs relying on subclassing

* Clear expression of intent - you shall not change!
* Do not - do it for performance reasons

* Your code may perform better but that’s not the point

Wednesday, November 16, 2011

What We Can Change

* Do - abuse final
e Simplifies closures, predicates, etc.
* Avoid public APIs relying on sulbclassing
e Clear expression of intent - you shall not change!
* Do not - do it for performance reasons
* Your code may perform better but that’s not the point

* Fall victim to the maybe extend effect

Wednesday, November 16, 2011

What We Can Change

Wednesday, November 16, 2011

What We Can Change

* Do not - use checked exceptions

Wednesday, November 16, 2011

What We Can Change

* Do not - use checked exceptions

* No single non-Java language on the JVM honors them

Wednesday, November 16, 2011

What We Can Change

* Do not - use checked exceptions
* No single non-Java language on the JVM honors them

* oo prone to flow control by exception

Wednesday, November 16, 2011

What We Can Change

* Do not - use checked exceptions
* No single non-Java language on the JVM honors them
* Too prone to flow control by exception

e Terrible APIs

Wednesday, November 16, 2011

What We Can Change

* Do not - use checked exceptions
* No single non-Java language on the JVM honors them
* Too prone to flow control by exception
* Terrible APls

* Do - have clean, expressive return types that indicate when
something can go wrong that a consumer cares about

Wednesday, November 16, 2011

What We Can Change

* Do not - use checked exceptions
* No single non-Java language on the JVM honors them
* Too prone to flow control by exception
* Terrible APls

* Do - have clean, expressive return types that indicate when
something can go wrong that a consumer cares about

 Make exceptions truly Exceptional - no catch blocks

Wednesday, November 16, 2011

What We Can Change

* Do not - use checked exceptions
* No single non-Java language on the JVM honors them
* Too prone to flow control by exception
* Terrible APls

* Do - have clean, expressive return types that indicate when
something can go wrong that a consumer cares about

 Make exceptions truly Exceptional - no catch blocks

* Document what can go wrong in APIs

Wednesday, November 16, 2011

What We Can Change

* Do not - use checked exceptions
* No single non-Java language on the JVM honors them
* Too prone to flow control by exception
* Terrible APls

* Do - have clean, expressive return types that indicate when
something can go wrong that a consumer cares about

 Make exceptions truly Exceptional - no catch blocks
* Document what can go wrong in APIs

e Return tuples (GO’s value + error)

Wednesday, November 16, 2011

What We Can Change

* Do not - use checked exceptions
* No single non-Java language on the JVM honors them
* Too prone to flow control by exception
* Terrible APls

* Do - have clean, expressive return types that indicate when
something can go wrong that a consumer cares about

 Make exceptions truly Exceptional - no catch blocks
* Document what can go wrong in APIs

e Return tuples (GO’s value + error)

e Google language design and C++ standards

Wednesday, November 16, 2011

What We Can Change

Wednesday, November 16, 2011

What We Can Change

* Do - monitor every single thing you may find interesting

Wednesday, November 16, 2011

What We Can Change

* Do - monitor every single thing you may find interesting

* Metrics and statistics are critical - 50th, 90th, 99th percentiles

Wednesday, November 16, 2011

What We Can Change

* Do - monitor every single thing you may find interesting
* Metrics and statistics are critical - 50th, 90th, 99th percentiles

* Log files still matter - metrics and statistics need context

Wednesday, November 16, 2011

What We Can Change

* Do - monitor every single thing you may find interesting
* Metrics and statistics are critical - 50th, 90th, 99th percentiles

* Log files still matter - metrics and statistics need context

Do not - monitor JMX directly

Wednesday, November 16, 2011

What We Can Change

* Do - monitor every single thing you may find interesting
* Metrics and statistics are critical - 50th, 90th, 99th percentiles
* Log files still matter - metrics and statistics need context

Do not - monitor JMX directly

 Most FOSS platforms are terrible at this, Most commercial
ones too

Wednesday, November 16, 2011

What We Can Change

* Do - monitor every single thing you may find interesting
* Metrics and statistics are critical - 50th, 90th, 99th percentiles
* Log files still matter - metrics and statistics need context

Do not - monitor JMX directly

 Most FOSS platforms are terrible at this, Most commercial
ones too

e JConsole is an awesome tool but not a monitoring or alerting
platform

P 4

Wednesday, November 16, 2011

What We Can Change

* Do - monitor every single thing you may find interesting
* Metrics and statistics are critical - 50th, 90th, 99th percentiles
* Log files still matter - metrics and statistics need context

Do not - monitor JMX directly

 Most FOSS platforms are terrible at this, Most commercial
ones too

e JConsole is an awesome tool but not a monitoring or alerting
platform

* Do not - Assume “l can just hook up a profiler later”

P 4

Wednesday, November 16, 2011

What We Can Change

* Do - monitor every single thing you may find interesting
* Metrics and statistics are critical - 50th, 90th, 99th percentiles
* Log files still matter - metrics and statistics need context

Do not - monitor JMX directly

 Most FOSS platforms are terrible at this, Most commercial
ones too

e JConsole is an awesome tool but not a monitoring or alerting
platform

* Do not - Assume “l can just hook up a profiler later”

* Do not - Worry about performance of these things

P 4

Wednesday, November 16, 2011

What We Can’t Change

* No first class functions
e [amlbda expressions

e Long GC Pauses

* Bad LCD choices

* Two reflections operations on private fields to get an FD?
Really?

e Spawning a process is painful compared to Python

e [ype erasure

Wednesday, November 16, 2011

Inspirations

e Stephan Schmidt: http://codemonkeyism.com/
generation-java-programming-style/

e https://qithub.com/technomancy/clojure-http-client/blob/
master/src/clojure http/client.clj

My Python Co-workers

5 R]
g

‘r

'HATERS GONNA HATE

Wednesday, November 16, 2011

http://codemonkeyism.com/generation-java-programming-style/
http://codemonkeyism.com/generation-java-programming-style/
http://codemonkeyism.com/generation-java-programming-style/
http://codemonkeyism.com/generation-java-programming-style/
https://github.com/technomancy/clojure-http-client/blob/master/src/clojure_http/client.clj
https://github.com/technomancy/clojure-http-client/blob/master/src/clojure_http/client.clj
https://github.com/technomancy/clojure-http-client/blob/master/src/clojure_http/client.clj
https://github.com/technomancy/clojure-http-client/blob/master/src/clojure_http/client.clj

e Urban Airship: http://urbanairship.com/

e \WWe’re hiring! http://urbanairship.com/company/jobs/

e Me @eonnen or erik at &

Wednesday, November 16, 2011

http://urbanairship.com/
http://urbanairship.com/
http://urbanairship.com/company/jobs/
http://urbanairship.com/company/jobs/

