
A Walk on the Dart Side

 A Quick Tour of ext

Gilad Bracha
Joint Work with the Dart Team

1Saturday, November 19, 2011

Dart at 50,000 feet

Language for Web Programming

 Sophisticated Web Applications need not be
a tour de force

2Saturday, November 19, 2011

Constraints

Instantly familiar to the mainstream
programmer

Efficiently compile to Javascript

3Saturday, November 19, 2011

Dart in a Nutshell

Purely Object-Oriented, optionally
typed, class-based, single
inheritance with actor-based
concurrency

4Saturday, November 19, 2011

So what’s so interesting?

Pure Object-Oriented, optionally
typed, class-based, single
inheritance with actor-based
concurrency

5Saturday, November 19, 2011

Some Modest Innovations

Optional types

Built-in Factory Support

ADTs without types

6Saturday, November 19, 2011

Some Modest Innovations

Optional types

ADTs without types

Built-in Factory Support

7Saturday, November 19, 2011

Some Modest Innovations

Optional types

ADTs without types

Built-in Factory Support

8Saturday, November 19, 2011

Mandatory Types Optional Types

9Saturday, November 19, 2011

Mandatory Types

Static type system regarded as mandatory

Maltyped programs are illegal

10Saturday, November 19, 2011

A Brief History of non-mandatory
Types

Common Lisp

Scheme (soft typing)

Cecil

Erlang

Strongtalk

BabyJ

Gradual Typing

11Saturday, November 19, 2011

A Brief History of non-mandatory
Types

Common Lisp

Scheme (soft typing)

Cecil

Erlang

Strongtalk

BabyJ

Gradual Typing

12Saturday, November 19, 2011

Optional Types

Syntactically optional

Do not affect run-time semantics

13Saturday, November 19, 2011

What does it look like?

14Saturday, November 19, 2011

Mandatory Types: Pros
In order of importance:

Machine-checkable documentation

Types provide conceptual framework

Early error detection

Performance advantages

15Saturday, November 19, 2011

Mandatory Types: Cons
Expressiveness curtailed

Imposes workflow

Brittleness

16Saturday, November 19, 2011

Optional Types:
Can we have our Cake and Eat it Too?

Documentation (for humans and machines- but not verifiable)

Types provide conceptual framework

Early error detection

Performance advantages (much attenuated)

17Saturday, November 19, 2011

Optional Typing Precludes ...

Type-based overloading

Type based initialization, e.g.,

int i; cannot mean var i: int = 0;

Type classes, C# extension methods ...

18Saturday, November 19, 2011

So what’s actually new?

Didn’t we have all this in Strongtalk in
1993?

19Saturday, November 19, 2011

Type Assertion Support

Dart’s optional types are best thought of as a type assertion
mechanism, not a static type system

20Saturday, November 19, 2011

Dart Types at Runtime
• During development one can choose to validate types

• T x = o; assert(o === null || o is T);

• By default, type annotations have no effect and no cost

• Code runs free

21Saturday, November 19, 2011

Checked Mode

22Saturday, November 19, 2011

Not your Grandfather’s Type
System

Not a type system at all -

rather a static analysis tool based on heuristics, coupled to a type
assertion mechanism

23Saturday, November 19, 2011

What about a real, sound, type
system?

There is no privileged type system, but pluggable types are possible

For example, one can write a tool that interprets existing type
annotations strictly

24Saturday, November 19, 2011

Runtime dependent on Type System

Type CheckingExecution

25Saturday, November 19, 2011

Runtime Independent of Type
System

Type CheckingExecution

26Saturday, November 19, 2011

What about type inference?

Type Inference relates to Type Checking as Type Checking to
Execution

Type inference best left to tools

27Saturday, November 19, 2011

Type System dependent on Type
Inference

Type Checking Type Inference

28Saturday, November 19, 2011

Type System Independent of Type
Inference

Type Checking Type Inference

29Saturday, November 19, 2011

Don’t get Boxed-In

Type Checking
Type

Inference

Type Checking

Execution

30Saturday, November 19, 2011

Interfaces

Every class induces an implicit interface

Interfaces are reified at runtime

Type tests are interface based

You can implement the interface of another class without
subclassing it

31Saturday, November 19, 2011

Generics

Reified

Covariant subtyping

Yes, Virginia, it isn’t sound

32Saturday, November 19, 2011

Optional Types and Reified Types

Annotations do not affect semantics

Type arguments to constructors? Interfaces?

33Saturday, November 19, 2011

Optional Types and Reified Types

Annotations do not affect semantics

Type arguments to constructors? Interfaces?

Type Arguments to constructors are optional, but are reified

Type tests are a dynamic construct that relies on reified interfaces

34Saturday, November 19, 2011

Summary: Optional Types
• Static checker provides warnings; tuned to be unobtrusive

• Type annotations have no effect except ...

• During development, you can check dynamic types against
declarations

35Saturday, November 19, 2011

But is it Dynamic?

noSuchMethod

Mirrors & Debugging

36Saturday, November 19, 2011

Some Modest Innovations

Optional types

ADTs without types

Built-in Factory Support

37Saturday, November 19, 2011

Libraries and ADTs

A Library is a set of top-level classes, interfaces and functions

Libraries may be be mutually recursive

Libraries are units of encapsulation

38Saturday, November 19, 2011

Libraries and ADTs

Library based privacy

- based on names

- _foo is private to the library

- naming and privacy are not orthogonal :-(

- privacy can be recognized context-free :-)

39Saturday, November 19, 2011

Interfaces vs. ADTs

How to reconcile?

- interfaces based on externally visible behavior

- ADTs based on implementation

40Saturday, November 19, 2011

Interfaces vs. ADTs
What happens when we implement an interface with private
members?

// in library 1

class A { var _foo = 0;}

foo(A a) => a._foo;

// in library 2

class B implements A {int get _foo()=> 42;}

foo(new B());

41Saturday, November 19, 2011

Interfaces vs. ADTs
What happens when we implement an interface with private
members?

// in library 1

class A { var _foo = 0;}

foo(A a) => a._foo

// in library 2

class B implements A {int get _foo()=> 42;} // Warning?

foo(new B());

42Saturday, November 19, 2011

Interfaces vs. ADTs
What happens when we implement an interface with private
members?

// in library 1

class A { var _foo = 0;}

foo(A a) => a._foo; // Warning?

// in library 2

class B implements A {int get _foo()=> 42;}

foo(new B());

43Saturday, November 19, 2011

Interfaces vs. ADTs
class B implements A {

 int get _foo()=> 42;

 noSuchMethod(msg){

 msg.name = ‘_foo’ ?msg.sendTo(this): super.noSuchMethod(msg);

 }

}

44Saturday, November 19, 2011

Some Modest Innovations

Optional types

ADTs without types

Built-in Factory Support

45Saturday, November 19, 2011

Factories
Constructors without tears

Use caches, return other types of objects

Instance creation expressions based on interfaces

Minimize need for Dependency Injection

46Saturday, November 19, 2011

Factories

47Saturday, November 19, 2011

Dart is not Done
• Mixins?

• Reflection

• High level actor semantics: await? Erlang-style pattern matching?
Promise-pipelining?

• Class nesting? First class libraries? Non-nullable types?

• Metadata? Pluggable types?

48Saturday, November 19, 2011

Q & A
49Saturday, November 19, 2011

