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Dart at 50,000 feet

Language for Web Programming

 Sophisticated Web Applications need not be 
a tour de force
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Constraints

Instantly familiar to the mainstream 
programmer

Efficiently compile to Javascript

3Saturday, November 19, 2011



Dart in a Nutshell

Purely Object-Oriented, optionally 
typed, class-based, single 
inheritance with actor-based 
concurrency
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So what’s so interesting?

Pure Object-Oriented, optionally 
typed, class-based, single 
inheritance with actor-based 
concurrency

5Saturday, November 19, 2011



Some Modest Innovations

Optional types

Built-in Factory Support

ADTs without types
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Mandatory Types          Optional Types
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Mandatory Types 

Static type system regarded as mandatory

Maltyped programs are illegal
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A Brief History of non-mandatory 
Types

Common Lisp                       

Scheme (soft typing)

Cecil

Erlang

Strongtalk 

BabyJ 

Gradual Typing
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Optional Types

Syntactically optional

Do not affect run-time semantics
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What does it look like?
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Mandatory Types: Pros 
In order of importance: 

Machine-checkable documentation

Types provide conceptual framework

Early error detection

Performance advantages
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Mandatory Types: Cons 
Expressiveness curtailed

Imposes workflow

Brittleness
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Optional Types: 
Can we have our Cake and Eat it Too? 

Documentation (for humans and machines- but not verifiable)

Types provide conceptual framework

Early error detection

Performance advantages (much attenuated)
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Optional Typing Precludes ...

Type-based overloading

Type based initialization, e.g.,

int i; cannot mean var i: int = 0;

Type classes, C# extension methods ...
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So what’s actually new?

Didn’t we have all this in Strongtalk in 
1993?
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Type Assertion Support

Dart’s optional types are best thought of as a type assertion 
mechanism, not a static type system
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Dart Types at Runtime
• During development one can choose to validate types

• T x = o;               assert(o === null || o is T);

• By default, type annotations have no effect and no cost

• Code runs free
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Checked Mode
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Not your Grandfather’s Type 
System

Not a type system at all -

rather a static analysis tool based on heuristics, coupled to a type 
assertion mechanism
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What about a real, sound, type 
system?

There is no privileged type system, but pluggable types are possible

For example, one can write a tool that interprets existing type 
annotations strictly
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Runtime dependent on Type System

Type CheckingExecution
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Runtime Independent of Type 
System

Type CheckingExecution
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What about type inference?

Type Inference relates to Type Checking as Type Checking to 
Execution

Type inference best left to tools
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Type System dependent on Type 
Inference

Type Checking Type Inference
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Type System Independent of Type 
Inference

Type Checking Type Inference

29Saturday, November 19, 2011



Don’t get Boxed-In

Type Checking
Type 

Inference

Type Checking

Execution
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Interfaces

Every class induces an implicit interface

Interfaces are reified at runtime

Type tests are interface based

You can implement the interface of another class without 
subclassing it
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Generics

Reified

Covariant subtyping

Yes, Virginia, it isn’t sound
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Optional Types and Reified Types

Annotations do not affect semantics

Type arguments to constructors? Interfaces?

33Saturday, November 19, 2011



Optional Types and Reified Types

Annotations do not affect semantics

Type arguments to constructors? Interfaces?

Type Arguments to constructors are optional, but are reified

Type tests are a dynamic construct that relies on reified interfaces
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Summary: Optional Types 
• Static checker provides warnings; tuned to be unobtrusive

• Type annotations have no effect except ...

• During development, you can check dynamic types against 
declarations
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But is it Dynamic?

noSuchMethod

Mirrors & Debugging
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Some Modest Innovations

Optional types

ADTs without types

Built-in Factory Support
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Libraries and ADTs

A Library is a set of top-level classes, interfaces and functions

Libraries may be be mutually recursive

Libraries are units of encapsulation
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Libraries and ADTs

Library based privacy

- based on names

- _foo is private to the library

- naming and privacy are not orthogonal :-(

- privacy can be recognized context-free :-)
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Interfaces vs. ADTs

How to reconcile?

- interfaces based on externally visible behavior

- ADTs based on implementation
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Interfaces vs. ADTs
What happens when we implement an interface with private 
members?

// in library 1

class A { var _foo = 0;}

foo(A a) => a._foo;

// in library 2

class B implements A {int get _foo()=> 42;}

foo(new B());
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Interfaces vs. ADTs
class B implements A {

   int get _foo()=> 42;  

   noSuchMethod(msg){

      msg.name = ‘_foo’ ?msg.sendTo(this): super.noSuchMethod(msg);

   }

}
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Some Modest Innovations

Optional types

ADTs without types
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Factories
Constructors without tears

Use caches, return other types of objects

Instance creation expressions based on interfaces

Minimize need for Dependency Injection
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Factories
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Dart is not Done
• Mixins?

• Reflection

• High level actor semantics: await? Erlang-style pattern matching? 
Promise-pipelining?

• Class nesting? First class libraries? Non-nullable types?

• Metadata? Pluggable types? 
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Q & A
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