

Building a Hybrid Cloud at Canadian Pacific

Stuart Charlton, Director – Infrastructure & Operations Information Technology

billion in revenues

Canadian Pacific's Network

Vision: To be the safest, most fluid railway in North America

CP operates in 6 Canadian provinces and 13 US States

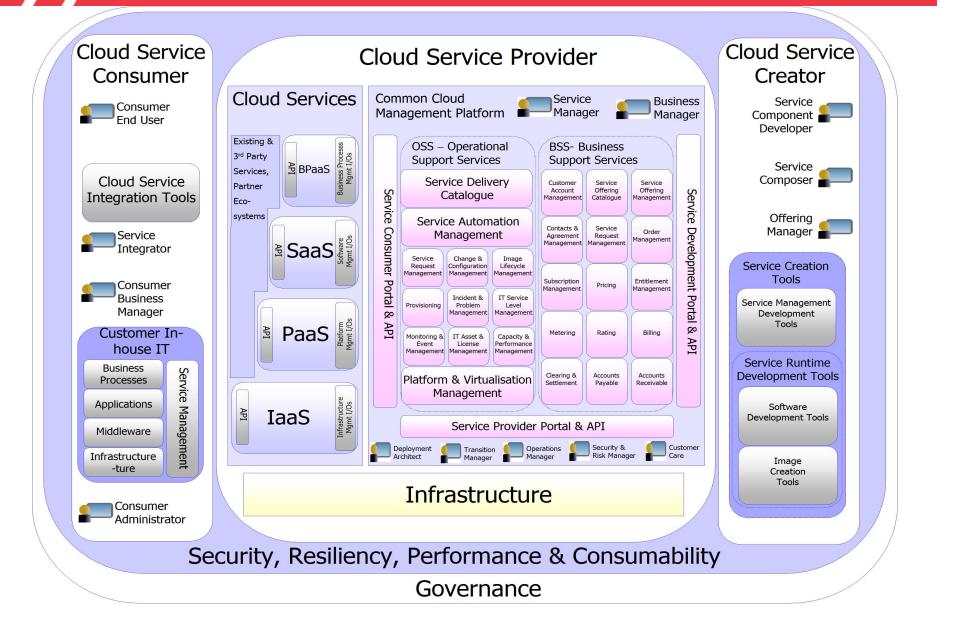
IT Transformation

2009-2015

Responding to the Railway Industry's Global Renaissance...

- Integrated Information Program
 - First Joint IT/Business Strategy
 - Big SAP Investment
 - Big Legacy Revitalization
- Positive Train Control
 - Integrated C&C
- Predictive Operations
- New Ordering Processes
 - Canadian Grain
- Reducing Operating Ratio

- Givens:
 - Major IT capital reinvestment starting in 2010 (more than doubled)
 - Planned for IT to deliver more in a single year than was done in prior 8 years combined



- Challenge #1: Volume, lead times & costs of **infrastructure**
 - Timeframe: 2010+
- Challenge #2: Bending down the **operational** cost curve for production
 - Timeframe: 2011+
- Challenge #3: Reducing *cycle time* of delivering changes to systems
 Timeframe: Pilot 2011, Rollout 2012+
- Challenge #4: Increasing the **availability** of core operational systems
 Timeframe: 2012+

Approach: Using the right tool for the job, given the time constraints

Caveat: Forward-looking - this all may change

Advice we got: "Look at how complicated all this stuff is!"

Multi-Year Infrastructure & Delivery Strategy

2011-2014

2009-2011

Public Cloud Adoption

- "Guerilla Cloud Warfare"
- Dev/Test Infrastructure
- Get the company used to them
- Resolve immediate lead time problems

2012-2015

Agile Delivery & Ops

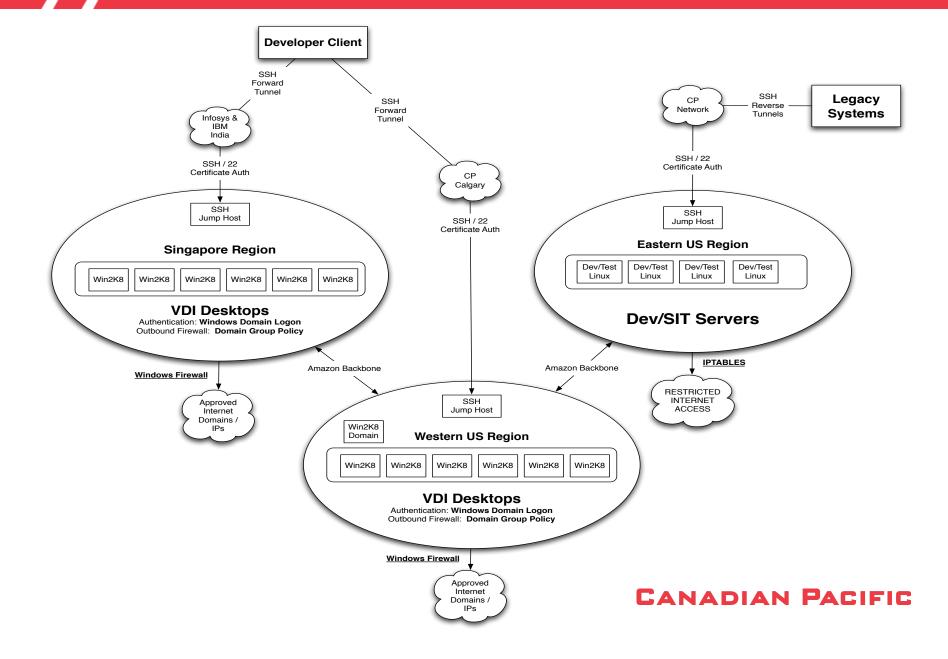
- Move everything to Linux/
 Windows
- Agile/lean development
- Automation, configuration management, pervasive virtualization
- Private Cloud for SAP

New Systems Arch

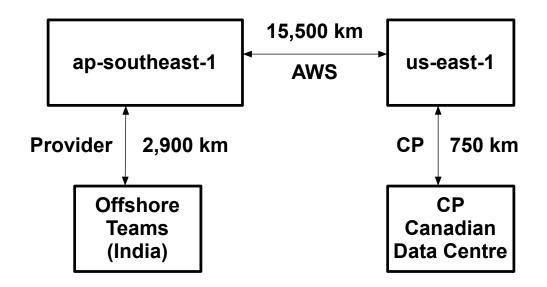
- Fault-Tolerant
 Distributed DBs &
 Data Grids
- Event-driven and RESTful integration
- Modular pieces

6

Public Cloud Adoption



How will you provision for them?


- Aka. "How to adopt several hundred desktops & servers in a controlled way with almost no staff"
- Example Roadblock: Firewalls
- Normal Solution: Open them up.
 - Discussions, paperwork, pilots, studies, wait 3 months
- Guerilla Solution: Reverse SSH Tunnels.
 Works with TCP, SOCKS, even UDP if you're crazy enough
- Lesson: Get approval and constraints from the people who matter
 - CIO (who should support your guerilla efforts), CISO (who will prepare his team + legal/audit), CTO or GM/VP of Architecture (who is supposed to promote new things)
 - Avoid the people who don't matter, ask forgiveness later

Global Public Cloud Dev/Test Network, late 2010

Public Cloud Benefits & Usage Notes

- Offshore resources get a managed developer workstation
 - Controlled device admissibility strategy into CP's systems
- Using Amazon's Internet backbone between regions
 - More bandwidth, lower latency access to CP's network in Canada
 - Today: Routed via SSH Tunnels
 - Late 2011 / Early 2012: VPN with Overlay Network

Data Categorization

- Handle the legal and regulatory issues associated with data residency
- Legal desire for physical disks during forensic analysis
- Biggest concern: Privacy in the face of a click-through agreement
- In short: *Trust your providers* (can't just use "any" cloud provider)
- Tier 1 Sensitive Data: Harm to Lives (e.g. Hazmat locations)
- Tier 2 Sensitive Data: Harm to Investors (e.g. financial forecasts)
- Not on public clouds yet
- Tier 3 Sensitive Data: Harm to Operations (e.g. Train/car locations)
- On public clouds if in Virtual Private Cloud and encrypted
- Tier 4 Sensitive Data: Stale Data and/or Dev/test
- On public clouds

(Note: These are representative examples, not our actual definitions)

- Very quick lead times to deliver working dev/test systems
 - Traditional infrastructure: WebSphere, SAP, Business Objects, SQL Server, Exchange, etc.
 - Newer infrastructure: Rails, Haproxy, Nginx, etc.

Performance challenges

- Most infrastructure clouds do not provide traditionally expected levels of visibility in storage and networking
- Trend is changing towards *more visibility & control*
 - E.g. Amazon subnets and routes in VPC
- Storage I/O is the major roadblock to traditional systems
 - E.g. Elastic Block Storage vs. traditional NAS/SAN
 - Latency is not as predictable, node throughput is capped at ~ 1 Gb, availability is not as predictable

Agile Infrastructure

Operations: Cultural & Tooling Changes

Old Assumptions

- "Put your eggs into a small number of baskets, and watch those baskets"

New Reality

- Partial failure is a regular, normal occurrence; no excuse for downtime from any business-level service

First Steps to Transformation

- Building culture of **collaboration** with IT service delivery
 - Ops offers service engineers as "production service architects"
- Begin a 5-10 year transition to "design for failure" architectures
 - Migration from Mainframe & AIX to Linux (by 2014)
 - In-Memory Data Grids (e.g. WebSphere Extreme Scale)
 - Future: Fault-Tolerant Distributed Databases (e.g. Riak)
- Increasing **visibility** into the operational systems
 - Correlation and drift detection independent of legacy (e.g. **Splunk**)

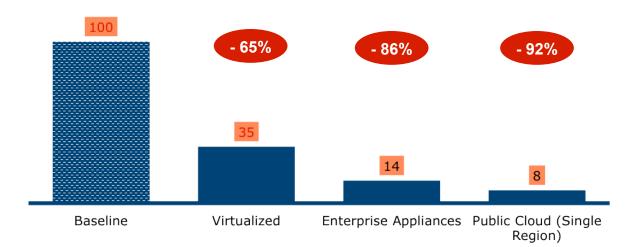
(Not Really Private Clouds)

- Oracle Exadata
 - Consolidated databases
 - Major OLTP operational data store
 - Major OLAP / data warehouse

- VCE Vblock
 - SAP Landscapes
 - Compute & Midsize DB
 - Exchange

"Wire Once, Walk Away"

Software-Based Automated Configuration Managed Services that Leverage the Productivity Gains

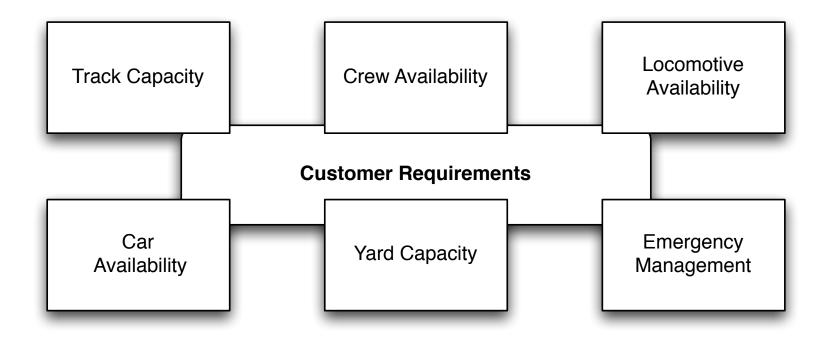


Private Cloud for Production is a Lofty/Questionable Goal

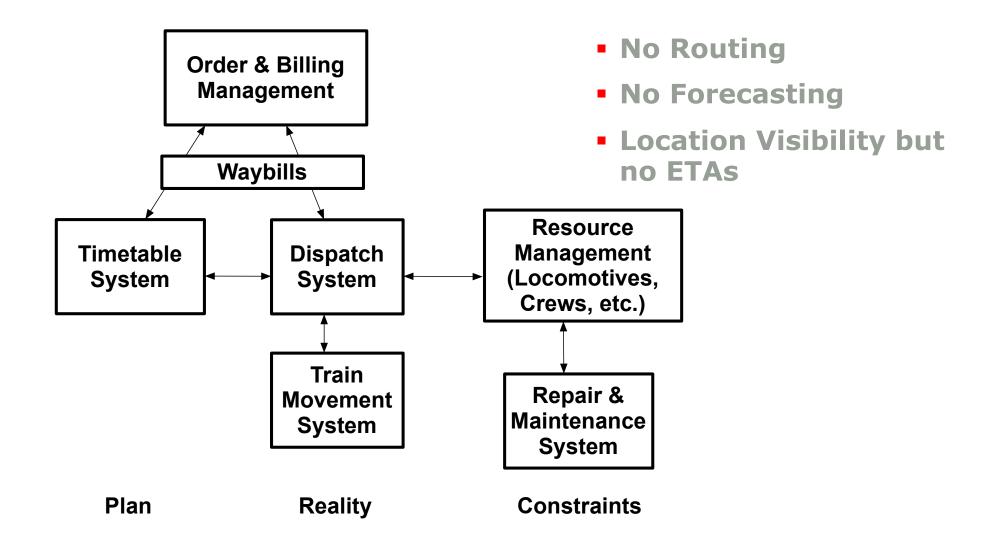
- Thus...
- We're focusing on combining virtualization and appliances with automation & metrics to reduce the dev/test cycle
- CP Application Development & Test Cloud
 - Vblock + VMware vCloud Director private cloud
 - Pilot Summer 2011, Full Rollout in 2012
 - Linked Clones & Network Fencing for
 - SAP, Legacy, Systems Integration testing
 - Continuing to grow public Cloud Dev/Test Network for new development
 - Continuing with EC2; Piloting vCloud public clouds
 - ITKO LISA for integrated simulation, testing, and validation

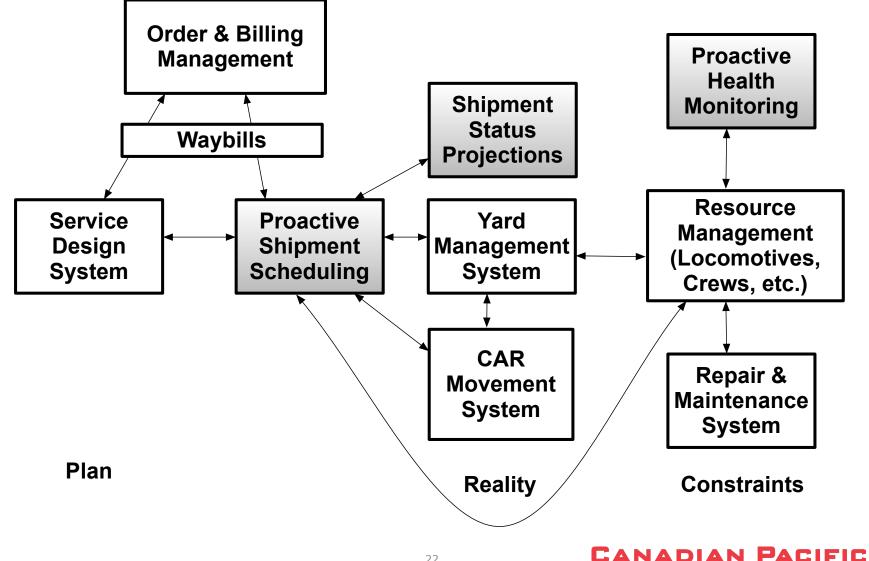
Projected Monthly Per-Instance Costs (over 3 years)

Includes Amortized Capital + Operating Expense (e.g. Public cloud fees) + Managed Services



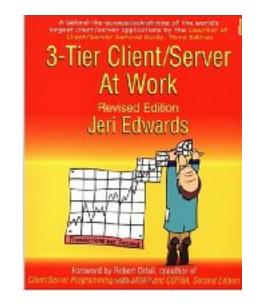
New Systems




The Logic and Constraints of a Railroad

Basic Railway Systems Architecture (80s)

Modern Railway System Architecture



Multi-Tier Hybrid Architecture

- Some stateless, some stateful computing
- Session state is replicated
- Independent servers / applications
 - Low-level redundancy (RAID, 2x NICs, etc.)
- "Put your eggs into a small number of baskets, and watch those baskets"

General assumptions

- Failure at the service layer shouldn't lead to downtime
- Failure at the data layer may be catastrophic
- Lots of point-to-point connections
 - ETL, SOAP web services, FTP, etc.

Designing a Service on the Cloud, circa 2008+

Autonomous services

- Divide system into areas of functional responsibility (tiers irrelevant)
- Interdependent servers / applications
 - Software-level redundancy and fault handling
- "Many, many servers breaking big problems down or distributing lots of little problems around"

New realities

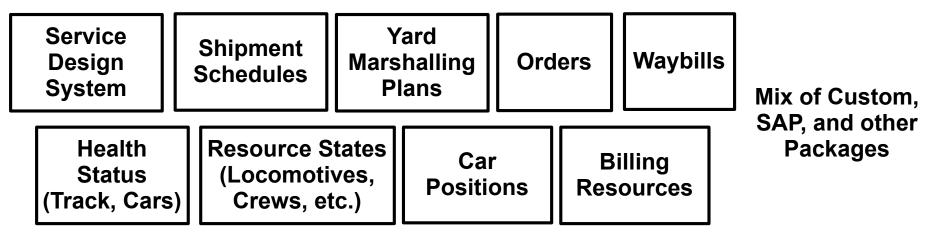
- A Million Little Pieces
- Partial failure is a regular, normal occurrence; no excuse for downtime from any service
- Self-describing (RESTful) services for client-device scale
- Event-driven integration for smaller number of consumers

Using, where possible: lightweight, simple, inexpensive solutions

1. High-Performance Event Management (thousands/sec)

- Consolidate across multiple proposed event systems
- Train & Yard Planning, Car Movement, Health Monitoring, PTC
- Foundation for:
 - Event-Based Integration & predictive real-time analytics
- **2.** RESTful "Information Resources on Demand"
 - Self-describing, discoverable, hyperlinked system interfaces & lifecycles
 - No need to directly integrate with databases etc.
 - Foundation for:
 - Business process integration
 - Modern GUIs and Mobile applications
 - Operational BI Mashups

3. Legacy Endpoint Management

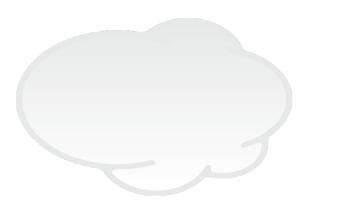

- MQ, SOAP Web Services, and Managed File Transfer (EDI)

Customer Service (Web & Mobile Devices)

Hyperlinked Data for Operations

Global Search and Analytics

RESTful Resources Exposed for Common Access



Event-Based Integration Across Where Appropriate

Summary: Multi-Year Infrastructure & Delivery Strategy

2011-2014

2009-2011

Public Cloud Adoption

- "Guerilla Cloud Warfare"
- Dev/Test Infrastructure
- Get the company used to them
- Resolve immediate lead time problems

2012-2015

Unified Infrastructure

- Move everything to Linux/
 Windows
- Agile/lean development
- Automation, configuration management, pervasive virtualization
- Private Cloud for SAP

New Systems Arch

- Fault-Tolerant
 Distributed DBs &
 Data Grids
- Event-driven and RESTful integration
- Modular pieces

27

Contacts & Thanks

Stuart Charlton Director – Infrastructure & Operations Information Technology Stuart_Charlton@cpr.ca Canadian Pacific Suite 500, 401 – 9th Avenue SW Calgary Alberta Canada T2P 4Z4 www.cpr.ca

With thanks to....

CP architecture: Gary Stedman, Dragan Sajic, Vincent Blue, Tim Riley

CP operations: Bob Nash, Jack Vanos, Michael Turcotte, Ron Legere, Stan Singer

CP IT risk management & security: Kevin Pasveer

CP application delivery: Shawn Adams, Michael Wiens, Steve Hester

CP CIO: Heather Campbell

