
Running with the Devil:
Mechanical Sympathetic Networking

Todd L. Montgomery
@toddlmontgomery
Informatica Ultra Messaging Architecture



Tail of a Networking Stack 

Beastie
Direct Descendants

FreeBSD
NetBSD

OpenBSD
...

Darwin (Mac OS X)
also

Windows, Solaris, even Linux,
Android, ... 



Domain: TCP & UDP



It’s a Trap!

...

TCP MSS
1448 bytes

Response

Big
Request
(256 KB)

?

Overly
Long
RTT

Symptom: Overly Long Round-Trip Time for a Request + Response

Specific Request Sizes? OSs?
Only

Set SO_RCVBUF Pops up again!
Solution 1

Set TCP_NODELAY
Solution 2

YES! but CPU Skyrockets!

Well understood bad 
interaction!



Challenges with TCP

Nagle

“Don’t send ‘small’ 
segments if un-
acknowledged 
segments exist”

Delayed ACKs

Don’t acknowledge data 
immediately. Wait a small 
period of time (200 ms) 

for responses to be 
generated and piggyback 

the response with the 
acknowledgement

Temporary Deadlock

Waiting on an 
acknowledgement to send 
any waiting small segment. 
But acknowledgement is 
delayed waiting on more 

data or a timeout

+ =

Solutions?



Little Experiment

...

TCP MSS
16344 bytes
(loopback)

Chunk Size
1500 32

4096 16

8192 12

RTT (msec)

Response
(1 KB)

BIG
Request
(32 MB)

Take Away(s)
“Small” messages are evil?
Chunks smaller than MSS are evil?

... no, or not quite ...
OS pagesize (4096 bytes) matters!

Why?
Kernel boundary crossings matter!

Dramatically 
Higher CPU

Question: Does the size of a send matter that much?

What about sendfile(2) and 
FileChannel.transferTo()?



Challenges with UDP

No Flow Control

Potential to overrun a 
receiver

Not a Stream

Message boundaries 
matter!

(kernel boundary 
crossings)

No Nagle
Small messages not 

batched

Not Reliable

Loss recovery is apps 
responsibility

No Congestion 
Control

Potential impact to all 
competing traffic!!

(unconstrained flow)

Causes of Loss
 

‣Receiver buffer overrun
‣Network congestion

(neither are strictly the apps fault)



Network Utilization & Datagrams

Data
Data + Control

No. of 200 Byte
App Messages

1 87.7

5 97.3

20 99.3

Utilization (%)

* IP Header = 20 bytes, UDP Header = 8 bytes, no response

Plus 
Fewer 

interrupts!

Batching?

“The 
percentage of 
traffic that is 

data”



Application-Level Batching?

Application
Specific 

Knowledge 

Applications 
sometimes know 

when to send small 
and when to batch

* HTTP (headers + body), etc.

+ Performance 
Limitations & 

Tradeoffs

Nagle, Delayed ACKs, 
Chunk Sizes, UDP 
Network Util, etc. 

= Batching by 
the Application

Applications can 
optimize and make 

the tradeoffs 
necessary at the time 

they are needed

Addressing
‣Request/Response idiosyncrasies
‣Send-side optimizations

 



Batching setsockopt()s

TCP_CORK

‣Linux only
‣Only send when MSS full, when unCORKed, or ...
‣... after 200 msec 
‣unCORKing requires kernel boundary crossing
‣Intended to work with TCP_NODELAY

TCP_NOPUSH

‣BSD (some) only
‣Only send when SO_SNDBUF full
‣Mostly broken on Darwin

When to Flush?

When to Batch?



Flush? Batch?

Question: Can you batch too much?

Flush when...

1. Application logic
2. More data is unlikely to follow
3. Timeout (200 msec?)
4. Likely to get data out before next one

Batch when...

1. Application logic
2. More data is likely to follow
3. Unlikely to get data out before next one

An Automatic Transmission for Batching

1. Always default to flushing
2. Batch when Mean time between sends < Mean time to send (EWMA?)
3. Flush on timeout as safety measure

YES! Large UDP (fragmentation) + 
non-trivial loss probability



A Batching Architecture

Socket(s)

“Smart” Batching
Pulls off all waiting data when 

possible (automatically batches 
when MTBS < MTTS)

Blocking Sends

MTBS: Mean Time Between Sends
MTTS: Mean Time To Send (on socket)

Advantages
‣Non-contended send threads
‣Decoupled API and socket sends
‣Single writer principle for sockets
‣Built-in back pressure (bounded ring buffer)
‣Easy to add (async) send notification
‣Easy to add rate limiting 

Can be re-used for other 
batching tasks (like file I/O, DB 
writes, and pipeline requests)!



Multi-Message Send/Receive

sendmmsg(2)

‣Linux 3.x only
‣Send multiple datagrams with single call
‣Fits nicely with batching architecture

recvmmsg(2)

‣Linux 3.x only
‣Receive multiple datagrams with single call
‣So, so, sooo SMOKIN’ HOT!

Advantages
‣Reduced kernel boundary crossings

 

Compliments gather send 
(sendmsg, writev) - which 
you can do in the same call!

Scatter recv (recvmsg, readv) is 
usually not worth the trouble



Domain: Protocol Design



Application-Level Framing

ADU 1
Split into Application Data Unit (constant size except maybe last)

ADU 2 ADU 3 ADU 4 ADU 5 ADU 6 ADU 7 ADU 8 ADU 9

ADU 1 ADU 2 ADU 4 ADU 5 ADU 6 ADU 7 ADU 8

ADU 3 ADU 9

S:

R:

File to Transfer

Recover

Advantages
‣Optimize recovery until end (or checkpoints)
‣Works well with multicast and unicast
‣Works best over UDP (message boundaries)

 

0 X bytes

Clark and Tennenhouse, ACM SIGCOMM CCR, VOlume 20, Issue 4, Sept. 1990



PGM Router Assist

Pragmatic General Multicast (PGM), IETF RFC 3208

Loss Here! Effects Both 
downstream links

No loss here on these 
subtrees

R R

S

Retransmit Path

Retransmit only needs to 
traverse link once for both 

downstream links

NAKs traverse hop-by-hop 
back up the forwarding tree, 

saving state in each router for 
retransmits to follow

...

NAK Path

Advantages
‣NAKs follow reverse path
‣Retransmissions localized
‣Optimization of bandwidth!

 



Questions?


