T

High Throughput Transactional Stream Processing
Terence Yim (@chtyim)




Who We Are

e Create open source software than provides simple access to powerful technologies

* Cask Data Application Platform (http://cdap.io) {j] CDAP

e A platform runs on top of Hadoop to provide data and application virtualization

e \irtualization of data through logical representations of underlying data
e Virtualization of applications through application containers

e Services and tools that enable faster application development and better operational control in production

e Coopr (http://coopr.io) ‘

e Clusters with a Click R

e Self-service, template-based cluster provisioning system

PROPRIETARY & CONFIDENTIAL



http://cdap.io
http://coopr.io

Tigon Architecture

Tigon Architecture e Basic unit of execution is called Flow

e A Directed Acyclic Graph (DAG) of Flowlets

e Multiple modes of execution

e Standalone

e Useful for testing
Events

e Distributed

e Fault tolerant, scalable

STANDALONE DISTRIBUTED

O Threads O YARN Containers

() In Memory Queues () HBase Tables

PROPRIETARY & CONFIDENTIAL




Execution Model

¢ Distributed mode
e Runs on YARN through Apache Twill
e One YARN container per one flowlet instance
e One active thread per flowlet instance

e Flowlet instances can scale dynamically and independently

e No need to stop Flow
¢ Standalone mode
e Single JVM
e One thread per flowlet instance

e Queues are in-memory, not really persisted

PROPRIETARY & CONFIDENTIAL




Flowlet

e Processing unit of a Flow

e Flowlets within a Flow are connected through Distributed Queue

e Consists of one or more Process Method(s)
e User defined Java method
e No restriction on what can be done in the method
e A Process Method in a Flowlet can be triggered by

e Dequeue objects emitted by upstream flowlet(s)
e Repeatedly triggered by time delay

e Useful for polling external data (Twitter Firehose, Kafka, ...)

* Inside Process Method, you can emit objects for downstream Flowlet(s)

PROPRIETARY & CONFIDENTIAL




Word Count

public class WordSplitter extends AbstractFlowlet {
private OutputEmitter<String> output;

@Tick (delay=100, unit=TimeUnit.MILLISECONDS)
public void poll () {

// Poll tweets from Twitter Firehose

//
for (String word : tweet.split ("\\s+")) {

output.emit (word) ;

PROPRIETARY & CONFIDENTIAL




Word Count

public class WordCounter extends AbstractFlowlet {

@ProcessInput
public void process (String word) {

// Increments count for the word in HBase

PROPRIETARY & CONFIDENTIAL




Word Count

public class WordCountFlow i1mplements Flow {
dOverride
public FlowSpecification configure () {
return FlowSpecification.Builder.with ()
.setName ("WordCountFlow")
.setDescription("Flow for counting words)
.withFlowlets ()
.add ("splitter", new WordSplitter())
.add ("counter", new WordCounter())
.connect ()
.from("splitter") .to("counter")
build () ;

PROPRIETARY & CONFIDENTIAL




Data Consistency

e Node dies

e Process method throws Exception
e Transient 10 issues (e.g. connection timeout)

e Conflicting updates

e \Writes to the same cell from two instances

PROPRIETARY & CONFIDENTIAL




Data Consistency

e Resume from failure by replaying queue

e At least once

e Data logic be idempotent

e Program handles rollback / skipping

e At most once

e L ossy computation

e Exactly once

e |deal model for data consistency as if failure doesn’t occurred

e How about data already been written to backing store?

PROPRIETARY & CONFIDENTIAL




Flowlet Transaction

Transaction to the rescue

".‘Write conflicts




Tigon and HBase

* Tigon uses HBase heavily

e Queues are implemented on HBase Tables

e Optionally integrated with HBase as user data stores

e HBase has limited support on transaction

e Has atomic cell operations

* Has atomic batch operations on rows within the same region
e NO cross region atomic operations

e NO cross table atomic operations

e NO multi-RPC atomic operations

PROPRIETARY & CONFIDENTIAL




Tephra on HBase

e Tephra (http://tephra.io) @ Tephra

e Brings ACID to HBase

e Extends to multi-rows, multi-regions, multi-tables

e Multi-Version Concurrency Control

e Cell version = Transaction ID

e All writes in the same transaction use the same transaction ID as version

e Reads isolation by excluding uncommitted transactions
e Optimistic Concurrency Control

e Conflict detection at commit time

e No locking, hence no deadlock

e Performs good if conflicts happens rarely

PROPRIETARY & CONFIDENTIAL



http://tephra.io

Flowlet Transaction

e Transaction starts before dequeue

e Following actions happen in the same transaction
e Dequeue
* Invoke Process Method

e States updates

e Only if updates are integrated with Tephra (e.g. Queue and TransactionAwareHTable in Tephra)

e Enqueue

e Transaction failure will trigger rollback

e Exception thrown from Process Method

e \Write conflicts

PROPRIETARY & CONFIDENTIAL




Distributed Transactional Queue

e Persisted transactionally on HBase

Tigon Queue Architecture

e One row per queue entry

e Enqueue

e Batch updates at commit time

e Commits together with user updates

e Dequeue

e Scans for uncommitted entries

" Scan with server e Marks entries as processed on commit
side filter

e Coprocessor

e Skipping committed entries on dequeue scan

e Cleanup consumed entries on flush/compact

PROPRIETARY & CONFIDENTIAL




Transaction Failure

e Rollback cost may be high, depends on what triggers the failure

e User exception

e Most likely low as most changes are still in local buffer

e \Write conflicts

e Relatively low if conflicts are detected before persisting

e High if changes are persisted and conflicts found during the commit phase
e Flowlet optionally implements the Callback interface to intercept transaction failure
e Decide either retry or abort the failed transaction
e Default is to retry with limited number of times (Optimistic Concurrency Control)

e Max retries is setting through the @ProcessIinput annotation.

PROPRIETARY & CONFIDENTIAL




Performance Tips

e Runs more Flowlet instances

e Dequeue Strategy
e @HashPartition

e Hash on the write key to avoid write conflicts
e Batch dequeue

e Use @Batch annotation on Process Method

e More entries will be processed in one transaction

e Minimize IO and transaction overhead

PROPRIETARY & CONFIDENTIAL




Word Count

public class WordSplitter extends AbstractFlowlet {
private OutputEmitter<String> output;

@Tick (delay=100, unit=TimeUnit.MILLISECONDS)
public void poll () {

// Poll tweets from Twitter Firehose

//
for (String word : tweet.split ("\\s+")) {

output.emit (word, "key", word); // Hash by the word

PROPRIETARY & CONFIDENTIAL




Word Count

public class WordCounter extends AbstractFlowlet {

@ProcessInput

@Batch (100)
@HashPartition("key")

public void process (String word) {

//

PROPRIETARY & CONFIDENTIAL




Summary

e Real-time stream processing framework
Tigon Stack Tigon o | :
SOL xactly once processing guarantees

* Transaction message queue on Apache HBase

e Transactional storage integration

e Through Tephra transaction engine
e Executes on Hadoop YARN

e Through Apache Twill

e Simple Java Programmatic API

e |[mperative programming

e Data model through Java Object

o

PROPRIETARY & CONFIDENTIAL




Road map

e Partitioned queue
e Better scalability, better performance

e Preliminary tests shows 100K events/sec on 8 nodes cluster with 10 flowlet instances

e Linearly scalable

e Drain / cleanup queue

e Better controls for upgrade
e Supports more programming languages
e External logging and metrics system integration

e More source Flowlet types

o Kafka, Twitter, Flume...

PROPRIETARY & CONFIDENTIAL




Contributions

o \Web-site: http://tigon.io

e Tigon in CDAP: http://cdap.io

e Source: https://www.github.com/caskdata/tigon
e Mailing lists

e tigon-dev@googlegroups.com

e tigon-user@googlegroups.com

e JIRA
e http://issues.cask.co/browse/TIGON

PROPRIETARY & CONFIDENTIAL



http://tigon.io
http://cdap.io
https://www.github.com/caskdata/tigon
mailto:tigon-dev@googlegroups.com
mailto:tigon-user@googlegroups.com
http://issues.cask.co/browse/TIGON

