Building Guardrails for Enterprise AI Applications W/ LLMs

Large Language Models (LLMs) such as ChatGPT have revolutionized AI applications, offering unprecedented potential for complex real-world scenarios. However, fully harnessing this potential comes with unique challenges such as model brittleness and the need for consistent, accurate outputs. These hurdles become more pronounced when developing production-grade applications that utilize LLMs as a software abstraction layer.

In this talk, we will tackle these challenges head-on. We introduce Guardrails AI, an open-source platform designed to mitigate risks and enhance the safety and efficiency of LLMs. We will delve into specific techniques and advanced control mechanisms that enable developers to optimize model performance effectively. Furthermore, we will explore how implementing these safeguards can significantly improve the development process of LLMs, ultimately leading to safer, more reliable, and robust real-world AI applications.


Speaker

Shreya Rajpal

Founder @Guardrails AI, Experienced ML Practitioner with a Decade of Experience in ML Research, Applications and Infrastructure

Shreya Rajpal is the creator and maintainer of Guardrails AI, an open source platform developed to ensure increased safety, reliability, and robustness of large language models in real-world applications. Her expertise spans a decade in the field of machine learning and AI. Most recently, she was the founding engineer at Predibase, where she led the ML infrastructure team. In earlier roles, she was part of the cross-functional ML team within Apple's Special Projects Group and developed computer vision models for autonomous driving perception systems at Drive.ai.

Read more
Find Shreya Rajpal at:

Date

Tuesday Oct 3 / 05:05PM PDT ( 50 minutes )

Location

Ballroom BC

Topics

AI/ML Generative AI AI Safety Guardrails AI Governance

Slides

Slides are not available

Share

From the same track

Session AI/ML

Chronon - Airbnb’s End-to-End Feature Platform

Tuesday Oct 3 / 10:35AM PDT

ML Models typically use upwards of 100 features to generate a single prediction. As a result, there is an explosion in the number of data pipelines and high request fanout during prediction.

Speaker image - Nikhil Simha

Nikhil Simha

Author of "Chronon Feature Platform", Previously Built Stream Processing Infra @Meta and NLP Systems @Amazon & @Walmartlabs

Session AI/ML

Defensible Moats: Unlocking Enterprise Value with Large Language Models

Tuesday Oct 3 / 11:45AM PDT

Building LLM-powered applications using APIs alone poses significant challenges for enterprises. These challenges include data fragmentation, the absence of a shared business vocabulary, privacy concerns regarding data, and diverse objectives among data and ML users.

Speaker image - Nischal HP

Nischal HP

Vice President of Data Science @Scoutbee, Decade of Experience Building Enterprise AI

Session Distributed Computing

Modern Compute Stack for Scaling Large AI/ML/LLM Workloads

Tuesday Oct 3 / 01:35PM PDT

Advanced machine learning (ML)  models, particularly large language models (LLMs), require scaling beyond a single machine.

Speaker image - Jules Damji

Jules Damji

Lead Developer Advocate @Anyscale, MLflow Contributor, and Co-Author of "Learning Spark"

Session AI/ML

Generative Search: Practical Advice for Retrieval Augmented Generation (RAG)

Tuesday Oct 3 / 02:45PM PDT

In this presentation, we will delve into the world of Retrieval Augmented Generation (RAG) and its significance for Large Language Models (LLMs) like OpenAI's GPT4. With the rapid evolution of data, LLMs face the challenge of staying up-to-date and contextually relevant.

Speaker image - Sam Partee

Sam Partee

Principal Engineer @Redis

Session

Unconference: Modern ML

Tuesday Oct 3 / 03:55PM PDT

What is an unconference? An unconference is a participant-driven meeting. Attendees come together, bringing their challenges and relying on the experience and know-how of their peers for solutions.